


affecting an organism). Examples are the different localization of receptors in different tissues
and organs such as the different histamine receptors: H2 acts on the gastric system while H3

acts in the central nervous system.
Introducing specificity for each subtype of receptor is crucial in achieving the desired ther-

apeutic effect without side-effects. Another factor to consider is the activation of very different
and unrelated proteins by similar ligands, i.e. a small modification in ligand structure can
imply a large biological effect; as well as the effect that small modification in ligand, protein,
or associated water structure can have even on the same protein [3]. Another factor to consider
is either the shared or different mechanisms of action and application routes of drugs [4].

A recent important development is the realization that breast cancer alone consists of 10
different diseases according to their different gene expression [5]. This shows how organ
compartimentalization according to ligand chemical space also needs to account for individual
target considerations (i.e. a disease in the same organ can have different molecular pathways
and molecular targets).

Recent work using drug and non-drug compiled datasets has provided information on the
molecular chemical space available to different groups of compounds, as well as their drug
ratio and sensitivity using probability density functions [6,7]. Their classification into drugs
and non-drugs has also been achieved using logistic functions [8]. In addition, compounds
with similar side-effects have been linked to similar activities against a variety of biological
targets [9]. Therefore, use of biological and chemical data can provide a means of charting
and understanding chemical and biological systems in unison.

Ligand efficiencies are gaining usefulness in describing simultaneously, among others, the
molecular properties of molecular binding, pharmacokinetics and size. Their utility is encom-
passed by the different molecular properties they can describe using molecular weight, num-
ber of heavy atoms, logP, surface areas, and others. Naïve Bayesian classifiers are useful in
representing classes of elements by their underlying distributions, without assuming relation-
ships between the properties of each element [10,11]. Therefore, in the present work, drugs
and non-drugs as well as the different disease category or organ of drugs, have been studied
using naïve Bayesian classifiers and the chemical space defined by the molecular properties
of the different compounds according to different disease categories or organs has been used
to define separate and statistically significant classifiers that can help in assigning and predict-
ing specificity or multiple effects between drugs and non-drugs, and between organs or dis-
ease categories.

2. Methods

2.1 Datasets

The compounds used for compiling the training and validation datasets are from the same
sources as used previously in our work [6–8].

A collection of drug compounds for the training set were compiled and curated from the
PDBBind version 2005 [12], the Ki Bank [13] and the SCORPIO dataset [14]. Non-drug
compounds were also collected for the training set from these sources and the DrugBank
database [15] was used to verify their nondrug status. The data include experimentally deter-
mined binding constants for each compound with its related target. The number of molecules
and the distribution of binding energies are similar for drugs and non-drugs.

For the validation dataset, different compounds from a newer collection of the PDBBind
database version 2009 [16], and PDSP database [17] that were not available at the time of
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compiling the training set were used. Thus, the validation set compounds are a completely
independent and external validation dataset. The total number of drugs was 417 compounds.
The total number of compounds was thus 823. The drug compounds were further grouped
according to their Anatomical Therapeutic Chemical Classification (ATC) disease category
(DC, 14 groups), as established by the World Health Organization [2] and as provided by the
DrugBank [15]. These are: DC1 = Alimentary tract and metabolism; DC2 = Blood and blood
forming; DC3 = Cardiovascular system; DC4 = Dermatological; DC5 = Genito-urinary sys-
tem and sex hormones; DC6 = Systemic hormonal drugs excluding sex hormones and insu-
lins; DC7 = Anti-infectives; DC8 = Anti-neoplastic and immunomodulating agents; DC9 =
Musculo-skeletal system; DC10 = Nervous system; DC11 = Antiparasitics, insecticides and
repellants; DC12 = Respiratory system; DC13 = Sensory organs; and DC14 = Various drugs.
The list of all compounds used, as well as the DC each drug belongs to, are provided in
Table S1 in the Supplementary Material which is available via the multimedia link on the
online article webpage.

2.2 Physicochemical properties and ligand efficiencies

The logarithm of the octanol–water partition coefficient (logP) was calculated with XLOGP
(an atom-additive method) [18]. Marvin Beans version 5.6.0.1 [19] was used for calculating
aliphatic ring count, apolar surface area (APSA), aromatic atom count, aromatic ring count,
atom count, Balaban index, bond count, exact mass (MW), Harary index, hydrogen bond
acceptor count, hydrogen bond donor count, hydrogen count, hyper-Wiener index, molecular
polarizability (molpol), molecular surface area (MSA), number of carbons (NoC), number of
heavy atoms (NHA), Platt index, polar surface area (PSA), Randic index, ring count, rotatable
bond count, Szeged index, Wiener index (Wiener), and Wiener polarity.

4Gbind, the binding energy of compounds to their partner proteins, was calculated as
before [6–8], using the experimental equilibrium inhibition or dissociation constants (Ki or
Kd), and temperature of 300K.

Ligand efficiency indices (LE) were calculated by dividing 4Gbind by a normalization
factor: NHA [20], MW [21,22], NoC [23], PSA [24], MSA [8], APSA [8] and Wiener index
[25].

2.3 Statistics

The statistical computing package R [26] was used for descriptive statistics, kernel density
computations, t-tests, probability calculations, density overlap coefficient calculations, as well
as some plots.

2.4 Bayesian classifiers

Bayesian classifiers were calculated according to Equation. 1, where l is the mean, σ is the
standard variation, and x is an independent variable [27]:

PðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2pr2

p e�
ðx�lÞ2
2r2 ð1Þ
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Since the population of drugs and non-drugs are similar in size, the a priori probability is
approximated to 1. Accuracy (as a percentage) was measured according to Equation (S1) in
the Supplementary Material available via the multimedia link on the online article webpage.
Sensitivity, and specificity (as a percentage), were calculated according to Equation (S2) and
Equation (S3), respectively, in the Supplementary Material. Mathew’s correlation coefficients
(MCC) were calculated as [28]:

MCC ¼ TP � TN � FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTN þ FNÞ � ðTN þ FPÞ � ðTP þ FNÞ � ðTP þ FPÞp ð2Þ

where TP = true positives, TN = true negatives, FP = false positives and FN = false nega-
tives. Overlap coefficients were calculated as [29]:

OC ¼
Z 1

�1
min½ f ðxÞ; gðxÞ�dx ð3Þ

where f(x) and g(x) are the function curves for each different group.

3. Results and discussion

3.1 Drugs vs. non-drugs

Descriptive statistics and kernel densities were calculated and compared. Pairwise compari-
sons of properties between drugs and non-drugs showed separation for several properties. An
immediate assessment is provided by box plot figures that show views comparable to histo-
grams viewed from atop. These box plots are shown in Figure 1.

From Figure 1 it can be seen that the binding affinity, ΔGbind, is virtually identical for
drugs and non-drugs. This is a feature design of our datasets in order to have non-drugs of
similar potency of binding as drugs to provide a challenging background to distinguish both
groups [6–8,25]. However, the properties of number of hydrogen bond acceptors, number
of hydrogen bond donors, logP, MW, number of heavy atoms (NHA) and PSA show shifts
between the distributions of properties between both groups. The ligand efficiencies of
ΔGbind/MW, ΔGbind/NHA, ΔGbind/PSA and ΔGbind/MSA also show shifts in means,
medians, and first and third quartiles between their distributions. To precisely quantify the
difference between all distributions, pairwise Student t-tests were conducted using Welch,
two-sample, unequal variance, two-sided statistical tests of the null hypothesis that the
difference between distributions can be due to random variation. Those properties that were
statistically significant at the 95% confidence level (i.e. p <0.05) are shown in Table 1,
together with their means (μ) and standard deviations (σ), as well as those for ΔGbind as a
comparison.

The number of hydrogen bond donors, number of hydrogen bond acceptors, molecular
weight, polar surface area and number of heavy atoms were lower for drug than non-drug
compounds. However, logP was slightly higher, but in a better defined distribution of values
than for non-drug compounds. The ligand efficiency indices were all deeper for drugs than
for non-drug compounds, which arises from the fact that the former are optimized for binding
and for their physicochemical properties [3,6,8,24].
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3.2 Bayesian classifiers for drugs and non-drugs

The comparison between distributions of physicochemical data of drug and non-drug com-
pounds can be achieved using the densities of their distributions. Figure 2 shows comparisons
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Figure 1. Box plots of physicochemical distributions of properties for drugs and non-drugs. Thick lines
show means, while edges of boxes show lower and upper quartiles.
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(including means) between the density distributions of the statistically significant properties of
number of hydrogen bond donors, logP and PSA of drugs and non-drugs, together with
4Gbind as control.

Figure 2 shows that these differences between the distributions are clear. The means and
standard deviations of the statistically significant properties, as well as their reasonably con-
tinuous distribution, allow use of a naïve Bayesian classifier to separate both groups into clas-
ses. Using Equation (1), where x is the value for a given property for a compound, it is
possible to calculate the probability (P) of a compound belonging to one of the two classes
by using μ and σ for each group (drugs and non-drugs in the training set). If the value calcu-
lated for Pdrug is larger than that of Pnon-drug, then the likelihood of a compound belonging to
the drug class is larger than belonging to the class of non-drugs. Using this classifier, the
probabilities of belonging to each class by the compounds of the validation set were calcu-
lated. The results are shown in Table 2, which gives accuracies, sensitivities, specificities and
Mathew’s correlation coefficients.

Table 2 also shows the results obtained for the combination (multiplication) of all the
probabilities of the properties and how they perform to classify the compounds, as well as
the combination of all the probabilities of the ligand efficiencies. Some of the properties per-
form better than others, but those at the top of the table have good values for accuracy, sensi-
tivity and specificity (approaching 100%), as well as MCC values (an MCC value of 1.0
would imply a perfect distinction between classes). Those with accuracies of 70% or higher,
and/or MCC values higher than 0.5, can be considered the best classifiers among these prop-
erties. It is important to note that these classifiers may be used sequentially or in combination,
in order to daisy chain different properties.

Another measure of assessing the ability to place into two classes the compounds was
provided by using the naïve Bayesian classifier probability as a rank and computing
Receiver–Operator characteristic (ROC) curves. These are presented in Figure S1 in the
Supplementary Material which is available via the multimedia link on the online article web-
page. From the ROC curves, the best ranking of drugs over non-drugs is provided, in
descending order, by the combined probability of all properties, the probability based on
number of hydrogen bond donors, the probability based on the number of hydrogen bond

Table 1. Means (μ) and standard deviations (σ) for the statistically significant properties of drugs and
non-drugs.

Property

Training set Validation set

μ Drugs σ Drugs
μ Non-
drugs

σ Non-
drugs μ Drugs σ Drugs

μ Non-
drugs

σ Non-
drugs

Acceptor count 5.5 3.3 12.2 6.1 5.4 4.6 9.8 0
Donor count 1.7 1.6 5.9 3.5 1.8 2.6 4.4 3
log P 2.29 2.01 �0.28 3.69 2.32 1.87 �0.10 4.1
MW 346.9 138.7 533.3 232.6 348.2 191.4 453 179.8
NHA 24.5 9.8 36.8 17 24.7 13.4 30.4 12.8
PSA 70 44.8 159.7 82.1 66.8 54.7 143.2 80.8
ΔGbind �9.64 2.92 �9.28 3.18 �10.22 2.31 �8.89 2.31
ΔGbind/MSA �0.024 0.010 �0.016 7.6e�3 �0.025 0.009 �0.02 0.010
ΔGbind/MW �0.032 0.015 �0.02 8.7e�3 �0.034 0.012 �0.023 0.011
ΔGbind/NHA �0.446 0.214 �0.288 0.133 �0.479 0.173 �0.353 0.176
ΔGbind/PSA �0.208 0.184 �0.088 0.123 �0.239 0.196 �0.081 0.047
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Figure 2. Kernel densities. Drugs are in dotted lines, non-drugs in full line curves; means as vertical
lines.

Table 2. Accuracy, selectivity, specificity, and Mathew’s correlation coefficients (MCC) for the
statistically significant properties of drugs and non-drugs.

Property

Training set Validation set

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) MCC

Accuracy
(%)

Sensitivity
(%)

Specificity
(%) MCC

Donor count 82.4 90.7 74.4 0.658 73.0 89.6 57.4 0.496
All together (P) 81.5 89.4 73.8 0.638 70.2 91.5 50.0 0.455
PSA 76.5 90.7 62.8 0.556 71.2 91.5 51.9 0.471
Acceptor count 76.1 90.7 61.9 0.547 66.5 93.4 40.7 0.401
log P 71.3 87.5 55.6 0.453 70.2 90.6 51.0 0.451
MW 68.5 88.4 49.1 0.407 62.8 89.6 37.1 0.313
ΔG/MW 68.2 61.7 75.3 0.374 73.5 82.1 65.7 0.484
All EI together (P) 67.5 50.5 84.1 0.367 70.2 74.5 66.7 0.413
ΔG/NHA 66.7 47.6 85.3 0.356 68.8 66.1 72.2 0.383
NHA 66.6 88.4 45.3 0.373 63.7 88.7 39.8 0.326
ΔG/MSA 65.8 41.8 89.1 0.351 65.6 55.7 75.9 0.323
ΔG � � � � � � � �
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acceptors, as well as the probability based on PSA. This is shown by the early recall of true
positives (in this case, drug compounds) and much better performance than a random choice,
which is represented by the diagonal black line. This is shown quantitatively by the areas
under the curve, the integration of the ROC curves of Figure S1 over the x axis, which are
presented in Table 3.

The values of the area under the curve (AUC) in Table 3 for the properties at the top of
the table show a high recall of drug compounds, where an AUC of 1.0 would show a com-
plete and perfect separation, and an AUC of 0.50 represents the area that would be covered
by a random choice represented by the black diagonal line. Here, the best classifiers for rank-
ing were all the probabilities combined, followed by hydrogen bond donors, hydrogen bond
acceptors, PSA and logP. The rest are less successful at this ranking.

It is interesting to note that some of the top properties correspond to some of the compo-
nents of Lipinski’s rule-of-five [30]. These properties such as small values for MW, logP,
number of hydrogen bond acceptors and donors have a strong role to play in the bioavailabil-
ity of compounds, specifically their oral bioavailability, describing physicochemical properties
of molecules that may make them more easily distributed across membranes. The rule-of-five
has been very useful in profiling compounds and libraries of compounds. However, coded as
a test, it provided an accuracy of only 60%, as well as a low MCC of 0.292 for classifying
the drugs and non-drug compounds in the validation set. Many of the Bayesian classifiers in
this work show better accuracy and MCC values. In addition, the naïve Bayesian classifiers
can provide a gradual and continuous ranking of compounds, instead of a harsh limit as in
the rule-of-five, which can be useful when profiling compounds and chemical libraries.

The naïve Bayesian classifiers constructed seem to be of help in scoring the probability of
a compound to belong to a class of drug or non-drug, based on their molecular properties,
and being applicable to new datasets. As they are naïve, they do not assume any structure or
relationship between the variables, but are of use to classify compounds.

3.3 Disease (organ) category vs. disease (organ) category

The drugs in the training and in the validation set were then grouped into their disease cate-
gory (DC). For each DC, pairwise comparisons were made for each molecular property calcu-

Table 3. Area under the curve (AUC) for the Receiver–Operator characteristic curves for statistically
significant properties.

Property

AUC

Training set Validation set

All together 0.851 0.742
Donor count 0.847 0.714
Acceptor count 0.819 0.688
PSA 0.778 0.713
logP 0.750 0.744
All EI together 0.662 0.543
MW 0.657 0.644
NHA 0.649 0.645
ΔG/MW 0.606 0.655
ΔG/NHA 0.602 0.652
ΔG/MSA 0.528 0.547
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lated in a similar way as in section 3.1. The statistically significant differences for all compar-
isons per DC and per molecular property are shown in Table S2 in the Supplementary Mate-
rial which is available via the multimedia link on the online article webpage. A further
characterization was provided by calculating the overlap coefficient between the density
Gaussians as calculated in Equation (3) and shown in Figure 3.

Figure 3 shows a broader distribution for DC8 (antineoplastic) than for DC10 (nervous
system), with separate peaks as well as an overlap coefficient of 0.33 between cancer (full
line) and nervous system (dotted line) drugs, shaded in grey. An overlap coefficient of 1.0
would show a complete overlap between distributions, which would render impossible any
separation between the groups. Thus, the property of number of hydrogen bond donors serves
as a good separator between the distributions for drugs used in cancer therapy and those act-
ing on the nervous system. The best properties were thus selected and a similar comparison
between the groups as in section 3.2 was computed.

3.4 Bayesian classifiers for DC (organ) vs. DC (organ)

The results for the best separations between drugs belonging to different DC or organ accord-
ing to molecular properties are shown in Table 4, with overlap coefficients shown in
Table S3 in the Supplementary Material which is available via the multimedia link on the
online article webpage.

A variety of molecular properties were useful for building naïve Bayesian classifiers
between drugs of different DC or organ. Some perform better than others, and in a couple of
cases, a combination (multiplication) of several probabilities derived from molecular proper-
ties provided the best results. For example, for the comparison of DC5 vs. DC7, the combina-
tion of the probability of classification provided by logP and number of hydrogen bond
donors was best; whilst for DC5 vs. DC10, the probability provided by the number of bonds,
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Figure 3. Overlap coefficient between density Gaussians of number of hydrogen bond donors for DC8
anti-neoplastic agents and DC10 nervous system drugs.
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number of aliphatic rings and number of hydrogens together gave the best results as defined
by accuracy and MCC. The DCs presented are for cardiovascular drugs (DC3), genito-urinary
system and sex hormones (DC5), anti-infectives (DC7), anti-neoplastic agents (DC8) and ner-
vous system agents (DC10).

The combination of terms, as in multiplication of variables in multivariate analysis, can
lead to the augmentation or dampening of the effect of dependent variables on the outcome
variable, or even spurious results if one is not careful when choosing the combination terms.
However, this is not an issue for the present work since the combination terms are the multi-
plication of the probability of a compound belonging to the drug distribution vs. nondrug dis-
tributions, and so the multiplication is comparing the same effect, that is, how different in
nature is the observed physicochemical value for a chemical compound in drugs as opposed
to non-drugs. That is, at no point are the molecular properties multiplied or mixed, only the
predicted naïve Bayesian probabilities of belonging to the drug distribution as opposed to the
non-drug distribution are combined (i.e. effect of several probabilities).

The ability to score a probability to class a chemical compound based on its molecular
properties to have a higher likelihood of belonging to a particular DC as opposed to another
may help in introducing specificity to chemical libraries and thus avoid unwanted side-effects.
Chemical libraries that could be targeted to specific organs or diseases would be a welcome
improvement for drug design or, conversely, for avoiding toxicity at a specific organ. In addi-
tion, when the same sort of biomolecular targets are present in several organs, the naïve
Bayesian classifiers may help in sorting compounds to tailor them to the organ in which they
would be effective or for a specific application. They also possess the advantage of being rel-
atively simple to use, fast (since they can be used on the fly) and are able to be rebuilt
according to specific information. For those cases where there is no statistically significant
difference between properties for two specific DC comparisons, this is also valuable informa-
tion in the sense that it may hint at a possible effect on multiple DCs or organs of a specific
compound or library.

4. Conclusions

The statistically significant physicochemical properties of ligands have been used to build naïve
Bayesian classifiers using the density of the property distributions. These have been used to
classify drugs vs. non-drugs, as well as drugs of one disease category or organ against other
disease categories or organs. These classifiers perform well for some molecular properties, as
shown by different tests on compound sets. They can also have utility by recalling true posi-
tives (such as drugs) from among non-drugs as evidenced by early receiver–operator character-
istics curves and areas under the curve which approach 1.0. Naïve Bayesian classifiers were
also able to be built for some disease categories or organs, and the overlap coefficients between
their Gaussian densities indicated favourable (small) overlaps in some cases. In addition, the
naïve Bayesian classifiers remain easily interpretable in their physicochemical properties.

These functions could be of help in designing chemical libraries or compounds that could
target a specific organ or disease category. The advantages could be in conferring specificity
to compounds according to organ or disease category, and thus helping to limit side-effects
and target-specific compartmentalization of compounds to an organ or disease. This would be
of use in the cases of a very similar (or identical) receptor present in different tissues or
organs and only one is indicated for therapeutic intervention. Conversely, discovering
non-statistically significant chemical property distributions between libraries of compounds
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may provide a gross indication that there may be possible activity at more than one organ or
disease category, given that their chemical space is very similar or overlaps considerably. It is
envisaged that this method can be employed on biomolecule- and organ specific-characteriza-
tion of chemical libraries, so that even finer detail may be incorporated.

Supplementary material can be found on via the multimedia link on the online article
webpage.
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