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Abstract: A dataset of protein-drug complexes with experimental binding energy and crystal structure were ana-

lyzed and the performance of different docking engines and scoring functions (as well as components of these) for

predicting the free energy of binding and several ligand efficiency indices were compared. The aim was not to eval-

uate the best docking method, but to determine the effect of different efficiency indices on the experimental and pre-

dicted free energy. Some ligand efficiency indices, such as DG/W (Wiener index), DG/NoC (number of carbons),

and DG/P (partition coefficient), improve the correlation between experimental and calculated values. This effect

was shown to be valid across the different scoring functions and docking programs. It also removes the common

bias of scoring functions in favor of larger ligands. For all scoring functions, the efficiency indices effectively nor-

malize the free energy derived indices, to give values closer to experiment. Compound collection filtering can be

done prior or after docking, using pharmacokinetic as well as pharmacodynamic profiles. Achieving these better cor-

relations with experiment can improve the ability of docking scoring functions to predict active molecules in virtual

screening.
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Introduction

Many drugs have been developed with the use of structure-based

drug design and molecular docking.1–5 When used correctly,

docking can be an invaluable tool for drug discovery and design.

Commonly, docking is used as a complement to other techni-

ques such as high-throughput screening (HTS). However, as an

example, Pierce et al. show that it can also be the primary tech-

nique, predicting 4 kinase inhibitors with a 14-fold increase in

enrichment over HTS.6 The active molecules’ binding modes

predicted by docking were experimentally confirmed by X-ray

crystallography.

Docking scoring functions perform generally well for predict-

ing protein-ligand binding modes,1–5 although they are less accu-

rate for predicting binding free energy.1–5,7 Docking programs

employ at least one scoring function for calculating the fit or

energy of a protein-ligand association. Scoring functions are

usually derived from atomic parameters generated from empiri-

cal or knowledge-based approximations to the experimental

binding energy of protein-ligand complexes. Most scoring func-

tions are additive in nature, in the sense that the more functional

groups a ligand has, the more interactions it can have with the

protein and the greater the intermolecular energy is thus calcu-

lated. In the case of polar functional groups, this would normally

be offset by higher desolvation energies, which are unfavorable

to the overall binding free energy. However, these desolvation

energies, if included in the scoring function or docking program

at all, do not tend to reflect the real trends, and so the scoring

functions end up overestimating the binding energy for larger

ligands at the expense of smaller ligands.1 A similar situation

arises for large hydrophobic ligands because the larger the mole-

cule, the more van der Waals contacts are calculated. Again,

large molecules would also incur in entropy penalties when

binding and even if some scoring functions attempt to estimate

this entropy loss by a measure of the number of rotatable bonds

of a ligand, they are not accurate and end-up still favoring larger

molecules. The proper calculation of entropies of binding is also

a complex issue for scoring functions, unlikely to be solved by

simple rotatable bond counts.8
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An inaccuracy of only 1–2 kcal/mol represents already a dif-

ference of one or more orders of magnitude in the calculated

affinities of proteins for ligands. However, even within this level

of inaccuracy, docking should be able to classify ligands as hav-

ing milli-, micro-, or nanomolar affinity in order to have predic-

tive ability (a difference of 3 orders of magnitude is around

4 kcal/mol). In drug discovery and design, accuracy is arguably

a more critical value to achieve than extreme precision. In other

words, accurate relative ranking of diverse and unrelated active

and inactive compounds is more sought after than less accurate

but precise absolute binding energies. In any case, there is a

need for computed values with higher accuracy that can be com-

pared with experimental data. This would reduce the number of

false positive and false negatives that a virtual screen can pro-

duce. The development of better scoring functions and docking

methods is an active field of research,1,2 with improvements

likely to come from better descriptions and parameterizations of

binding,9–12 solvation interactions,13–17 as well as flexibility18–20

and entropy effects.8,21

Another method of improving the result from docking experi-

ments is postprocessing the results, such as combining the result

of several scoring functions, called ‘‘consensus scoring,’’7,22 or

rescoring the energy for docked poses with a different method,

such as molecular mechanics Poisson-Boltzmann (MM/PBSA)23

or generalized Born/Surface Area (MM/GBSA).24,25 Compari-

sons between scoring functions and related challenges have

been performed elsewhere,26,27 and it is not the objective of this

article.

Recently, ligand efficiency indices (E.I. 5 DG/Measure,

where DG is the binding free energy) have been proposed as a

method to normalize the experimental,28–31 as well as computa-

tional binding free energies of ligands.32–35 An efficiency index

measure can be any molecular measure of comparison between

ligands and can be related to the molecular size such as molecu-

lar weight (MW), number of heavy atoms (NHA), number of

carbons (NoC), or molecular or polar surface area. They can

also be related to the solubility and permeability of a ligand by

incorporating the logarithm of the octanol-water partition coeffi-

cient log P.34 They can provide a measure of how efficiently a

ligand binds to a biomolecule, even being able to determine the

compounds that may disrupt a protein–protein interaction if their

number of heavy atoms efficiency index, DG/NHA, is deeper

than 20.24 kcal/molNHA.35 The reason for this is that those

small molecules have a higher efficiency of binding per heavy

atom than the protein or peptide they displace, even with a sur-

face area as low as half that of the peptide or protein.35 There is

a well-known tendency of lead molecules to increase in size and

lipophilicity during optimization in search of higher affinity.36

But this increase in lipophilicity can also carry more risks in

associated side-effects and toxicity.36 The related measure of

pIC50 2 cLogP has also been introduced to try to define the lip-

ophilic space available to drug candidates.36

In this work, we explore how different docking programs and

scoring functions can correlate with experimental values, both

for free energy of binding, as well as to five different efficiency

indices. These efficiency indices are free energy of binding/mo-

lecular weight (DG/MW), free energy of binding/number of

heavy atoms (DG/NHA), free energy of binding/number of car-

bons (DG/NoC), logarithm of 2free energy of binding/partition

coefficient (log(2DG/P)), and free energy of binding/Wiener

index (DG/W).33,34 Achieving better correlations of scoring func-

tions with experimental values can increase the accuracy of scor-

ing functions, and therefore the reliability of docking programs

to predict active molecules in screening procedures.

Results

It is important to use drug compounds as test systems, because

their complexity as compared with standard compounds can be

challenging for scoring functions. Twenty-six protein-drug com-

plexes with known experimental free energy of binding were

obtained from comparing the PDBbind and DrugBank databases,

yielding a wide variety of drugs with different shapes, sizes and

chemical features. These complexes are given in the Supporting

Information Table S1, while the structures of the drugs are

shown in Table 1. Efficiency indices were also determined for

all cases. Molecular surface area and polar surface area were not

used because they can be sensitive to conformation.

The experimental free energies of binding were collected and

the calculated free energies of binding were computed for each

complex, using all the scoring functions as well as a selection of

their components. Care was taken to use the experimental struc-

ture for calculating the docking score and only relaxations of

this structure, or ‘‘docking in place’’ was performed, to maintain

the same binding mode and pose for all programs (achieving

complexes with electrostatic and van der Waals energies such as

that in Fig. 1).

The results for several scoring functions and components for

the 26 resulting protein-ligand complexes are shown in Table 2,

and plotted results are shown in Figure 2a. Table 2 and Figure

2a show the difference in values for the experimental and calcu-

lated free energy of binding for each protein-drug complex.

Chemscore and Goldscore are included in Figure 2a, even

though they have positive scales (they return a positive value

instead of a negative free energy). They were included as the

negative of their value, i.e., 2Goldscore (GS) and 2Chemscore

(CS), for the sake of comparison. XPc and SPc correspond to

the Coulomb 1 van der Waals components of XP and SP,

respectively. XP and SP correspond to XP and SP ‘‘refine’’ treat-

ment, whereas SPi refers to SP ‘‘in place.’’ ABE corresponds to

autodock binding free energy, AIE to autodock intermolecular

energy. DGe is the experimental calculated energy, DGb is a

component of CS called DGbindGOLD. Some scoring functions

have values that are closer to the experimental ones, and some

follow the trend of the experimental values better.

The efficiency indices were then calculated for each scoring

function value (as well as the selected components of the scor-

ing functions) substituting the value for DG in DG/MW, DG/
NHA, DG/NoC, log(2DG/P), and DG/W. The same efficiency

indices were calculated for the experimentally determined DG.
The means, medians, and 6 standard deviations for all systems,

as well as the complete tables are available in the Supporting In-

formation Tables S2–S6. The plotted results for the molecular

weight efficiency index for all scoring functions and experiment
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are shown in Figure 2b, while the Wiener index efficiency index

is shown in Figure 2c.

As can be seen from Supporting Information Tables S1–S5

and Figure 2b (DG/MW), there is still some variation between

the experimental efficiency indices and the calculated efficiency

indices. However, Figure 2c (DG/W) shows how the experimen-

tal and calculated efficiency indices are now quite close. The

linear regression correlation coefficients between the experimen-

tal and calculated binding energies, as well as between experi-

mental and calculated efficiency indices were computed for all

cases. They are shown in Table 3.

Table 1. Drug Structure Dataset.

Novobiocin, 1 Aminocaproic acid, 2

Methotrexate, 3 Argatroban, 4

Amiloride, 5 Tacrolimus, 6

Hydrocortisone, 7 Raltitrexed, 8

Ritonavir, 9 Pyrimethamine, 10

Acetazolamide, 11 Captopril, 12

Dexamethasone, 13 Lisinopril, 14

Table 1. (Continued).

Adenosine, 15 Nelfinavir, 16

Gemcitabine, 17 Marimastat, 18

Norethindrone, 19 Amprenavir, 20

Azelaic acid, 21 5-Flurouracil, 22

Nicotine, 23 Amodiaquine, 24

Ethacrynic acid, 25
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Some efficiency indices appear to be better than others for

correlating experimental and calculated values. From Table 3, it

can be seen that for some scoring functions, MW and NHA ei-

ther do not improve the results or provide only a modest

improvement over the correlations with experimental values.

The simple measure NoC (number of carbons) provides a good

correlation for some of the scoring functions. This efficiency

index is related to the nonpolar surface area, because the larger

NoC a compound has, the larger its nonpolar surface is likely to

be. Therefore, it may be providing an indirect measure of the

desolvation energy for a molecule. The efficiency index

log(2DG/P) provides good correlations for all scoring functions

between experimental and calculated values. This index is

directly related to the permeability of a molecule. The efficiency

index DG/W also improves all of the correlations. The p values

in Table 3 show the probability that the corresponding F-statistic

could have occurred by chance. All of them are below a 5
0.05, indicating that the regression models are useful in predict-

ing the linear relationship with the experimental values (at a

95% confidence level). Efficiency indices, therefore, also appear

to be able to introduce useful extra information in addition to

the free energy of binding into a derived measurement.

As examples of the good linear correlations between experi-

mental and calculated values, the plot of the experimental DG/
NoC versus calculated DG/NoC for DGb (DGbindGOLD, a

component of Chemscore) is shown in Figure 3a; experimental

log(2DG/P) versus calculated log(2DG/P) for the same DGb is

shown in Figure 3b; and the plot of the experimental DG/W ver-

sus calculated DG/W for DGb is shown in Figure 3c.

Figure 1. Complex of acetazolamide (11, sticks) with carbonic

anhydrase X11 (surface and sticks) obtained by docking on crystal

structure 1JD0. Nitrogen atoms in blue, oxygen in red, hydrogen in

white, sulfur in yellow, hydrogen bonds as yellow dashes.

Table 2. Experimental and Calculated Free Energies of Binding (kcal mol21).a

PDB code DGe ABE AIE GS CS DGb XP SP SPi

1aj6 28.07 29.97 28.85 244.84 214.52 217.88 27.07 27.69 25.93

1cea 26.76 26.82 26.82 240.12 220.72 222.17 28.18 25.58 26.86

1dhi 29.90 29.54 29.54 267.31 222.29 224.97 29.46 29.60 29.00

1dhj 28.93 27.86 210.56 272.54 225.83 227.29 28.72 28.72 27.60

1dwc 210.10 210.29 210.29 212.28 227.79 234.23 211.08 27.65 26.07

1f5l 27.19 27.12 27.52 235.58 217.86 218.48 26.92 27.16 26.57

1fkf 212.81 210.19 212.04 252.82 235.20 237.38 211.33 27.13 26.26

1h61 26.66 26.81 26.81 224.87 223.01 223.99 29.13 25.90 23.71

1hvy 28.42 28.33 27.24 246.14 216.59 217.50 25.77 26.87 26.04

1hxw 214.75 215.12 215.12 290.22 243.46 247.69 214.57 212.24 211.20

1j3j 210.92 27.50 27.50 252.20 221.48 225.36 28.15 26.55 25.83

1jd0 211.24 25.87 26.34 241.68 218.77 222.77 24.55 24.22 24.18

1m2x 25.66 214.66 215.50 253.91 222.66 224.30 27.05 29.82 29.30

1m2z 29.84 210.24 211.15 246.61 236.01 238.04 213.97 29.44 28.86

1o86 213.04 217.32 221.14 259.41 234.82 243.04 212.90 211.70 210.69

1odi 25.73 25.34 26.32 248.17 215.83 216.93 28.05 27.90 26.26

1ohr 211.86 212.57 213.93 252.87 236.34 239.09 211.16 29.43 29.48

1p62 26.35 25.73 25.73 246.16 218.62 221.90 212.56 27.33 25.76

1r55 29.26 29.37 211.69 252.77 222.75 235.60 210.56 29.47 29.43

1sqn 212.81 210.07 210.07 260.74 232.60 235.49 211.01 28.51 28.36

1t7j 211.86 210.34 213.05 272.31 225.23 229.21 29.35 27.68 26.50

1tuf 25.52 27.11 29.27 223.67 28.07 211.63 22.97 24.36 24.42

1upf 26.27 23.83 23.83 217.72 210.25 211.11 25.65 25.98 25.30

1uw6 210.01 26.53 26.78 241.36 225.63 228.06 24.97 25.85 25.94

2aou 210.54 210.35 210.35 224.79 236.79 239.81 210.22 29.00 28.68

2gss 26.73 26.39 27.63 228.72 218.02 219.77 26.45 25.40 25.57

aDGe, experimental binding free energy; ABE, autodock binding free energy; AIE, autodock intermolecular energy;

GS, 2Goldscore; CS, 2Chemscore; DGb, DGbindGOLD; XP, XPrefine; SP, SPrefine; SPi, SP in place.
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Since DGb is a component of CS, and therefore also of SP

and XP, it is interesting to note that a component can have bet-

ter correlation with experimental values than the full scoring

function. This can be due to the need of improvement in the

extra features of the scoring function, such as the desolvation

penalties and entropy corrections. As controls, the experimental

free energy of binding was correlated against the MW, NHA,

NoC, log P, and Wiener values. The results did not show any

strong linear correlation, with the R2 values being 0.323, 0.364,

0.404, 0.205, and 0.315, respectively. This means that the good

correlations found between experimental and calculated effi-

ciency indices are not spurious or redundant.

Linear regressions were also carried out between the simple

DGe and all of the calculated efficiency indices, and they

showed no linear correlation stronger than 0.1. Linear regres-

sions were also calculated for all the efficiency indices against

the molecular properties (MW, NHA, NoC, etc.) to test the dom-

inance of these in the derived efficiency index, showing no

strong linear correlation either, with most beneath 0.5, except

SPi and SP (most SPi and SP correlation R2s around 0.6, except

SPi/W and SP/W vs. W, R2 5 0.2). An exception for all the

scoring functions was log P, which showed strong correlation

between log(2DG/P) vs. log P of circa 0.99 in R2. However,

this effect was created by the logarithm function. If the simple

DG/P was calculated instead, then all of the scoring functions

had correlations between DG/P vs. P lower than 0.1. Indeed,

this efficiency index is better suited than log(2DG/P), and also

shows strong correlations between calculated and experimental

efficiency indices as seen in Table 4.

The improvements in going from DG to the different effi-

ciency indexes are shown in Figure 4, where it can be seen that

some of the efficiency indices (DG/NoC, log(2DG/P), DG/W,

and DG/P) produce better improvements than others.

Figures 5a–5g show box plots for all of the distributions

studied, and compares experimental and calculated efficiency

indices where the spread between and within each series of data

can be observed. The horizontal dark lines represent the median

of the distributions, while the dark diamonds represent outliers.

The plots of the free energy of binding have quite different

spreads between the experimental and the calculated values,

except for ABE, AIE, XP, SP, and SPi (Fig. 5a). DG/MW (Fig.

5b) and DG/NHA (Fig. 5c) indices do not change these spreads

very much, while DG/NoC (Fig. 5d) already provides closer

spreads between calculated and experimental values. Log(2DG/
P) (Fig. 5e), DG/W (Fig. 5f), and DG/P (Fig. 5g) all show

spreads that are now quite comparable between the experimental

and calculated efficiency indices.

Shapiro normality tests were conducted for all the distribu-

tions studied, and they are shown in Supporting Information Ta-

ble S8. Some of the distributions did not differ from a normal

distribution with a 95% confidence limit and for these, Welch,

independent, two-sided, t-tests were carried out between the ex-

perimental and calculated values (Table S9 in the Supporting In-

formation). In the case of free energy of binding, for DGe,

ABE, AIE, and XP, the test showed that the null hypothesis was

true, i.e., that the true difference in means between the calcu-

lated and the experimental distributions is equal to zero, and

they are comparable distributions. This was also the case for all

the experimental and calculated log(2DG/P) efficiency indices.

For all of the distributions, Mann-Whitney U tests (a non-

parametric test) were carried out to compare the experimental

Figure 2. (a) Free energy of binding (DG) for each complex and

several docking experiments, as well as determined by experiment.

(b) Comparison of free energy of binding/molecular weight (DG/
MW) efficiency indices for experiment and several scoring func-

tions. (c) Comparison of free energy of binding/Wiener index (DG/
W) efficiency indices for experiment and several scoring functions.
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and calculated distributions to assess whether two samples of

observations come from the same distribution, including for all

cases where the values were not normally distributed. The

results are shown in Supporting Information Table S10. For free

energy of binding, the test statistics W and p-values (p higher

than 0.05, 95% confidence level) showed that there was no stat-

istically significant difference between the experimental DG val-

ues and each of the calculated ABE, AIE, XP, and SP distribu-

tions. For DG/MW, there was no statistically significant differ-

ence between the experimental and each of the ABE, AIE, XP,

SP, and SPi calculated distributions. This was also true for DG/
NHA, DG/NoC, and DG/W index. For log(2DG/P) and DG/P,
all of the calculated distributions had no statistically significant

difference to the experimental one, for all of the scoring func-

tions studied.

The equations between experimental and calculated values

were then Y-scrambled with random numbers in the same range

of values. Nearly all the R2 values were markedly lower than for

the unscrambled models (below 0.6). The only exception were

the values of log(2DG/P) which remained high even in the

scrambled models. This indicates that this efficiency index is not

particularly good for improving the correlations, since it cannot

distinguish a true correlation from a random one, although the

logarithm function was responsible for that behavior. Impor-

tantly, the efficiency index DG/P had low correlation values for

the scrambled models, which indicates that it has reliability.

From these scrambling results, we can see that there is a small

component in the efficiency indices which improves the correla-

tions with experimental values due to mathematical correction

(that is, it is beneficial to have the values on the same scale),

but it does not account for all of the improvement. This suggests

that there may be physical underlying causes to the improve-

ments, which depend on the normalizing measure incorporated

into the efficiency index. The improvement effect may be due to

description of the entropic part of the free energy of binding,

through efficiency indices that describe the topology of a mole-

cule (such as W).32 Other efficiency indices such as NoC and P,
may provide improvement through a description of the desolva-

tion and of the permeability of a compound. For all scoring

functions, the best efficiency indices effectively normalize the

free energy derived indices, to give values closer to experiment.

Discussion

Efficiency indices can improve the outcome of docking scoring

functions because they provide a closer agreement with experi-

mental values. In addition, useful information related to the mo-

lecular properties of a molecule such as its lipophilicity P, or to-
pology (described by W), can be incorporated into a single indi-

cator. Some efficiency indices appeared to be better than others

at improving the correlations. DG/NoC, DG/W, and DG/P are

better than DG/MW or DG/NHA, and this effect was observed

for all scoring functions.

Table 3. Linear Regression Correlation Coefficients and Statistics Between Experimental and Calculated

Values for Binding Free Energy, (y 5 ax 1 b) as well as Five Efficiency Indices.a

ScorF DG DG/MW DG/NHA DG/NoC log(2DG/P) DG/W

DGe 1 1 1 1 1 1

DGb 0.676, 50.2,

p\ 0.001

0.684, 51.9,

p\ 0.001

0.673, 49.4,

p\ 0.001

0.842, 127.7,

p\ 0.001

0.997, 9065,

p\ 0.001

0.885, 184.5,

p\ 0.001

CS 0.634, 41.6,

p\ 0.001

0.644, 43.4,

p\ 0.001

0.626, 40.3,

p\ 0.001

0.798, 94.7,

p\ 0.001

0.997, 7216,

p\ 0.001

0.870, 161.4,

p\ 0.001

GS 0.310, 10.8, 0.003 0.473, 21.6,

p\ 0.001

0.490, 23.0,

p\ 0.001

0.712, 59.4,

p\ 0.001

0.992, 2916,

p\ 0.001

0.822, 110.9,

p\ 0.001

XP 0.315, 11.0, 0.0029 0.319, 11.3, 0.0026 0.299, 10.2, 0.0038 0.450, 19.6,

p\ 0.001

0.994, 4341,

p\ 0.001

0.819, 108.6,

p\ 0.001

XPc 0.357, 13.3, 0.0012 0.362, 13.6, 0.0011 0.416, 17.1,

p\ 0.001

0.769, 79.8,

p\ 0.001

0.996, 5545,

p\ 0.001

0.877, 171.6,

p\ 0.001

SP 0.246, 7.82, 0.010 0.415, 17.0,

p\ 0.001

0.390, 15.3,

p\ 0.001

0.511, 25.1,

p\ 0.001

0.996, 6009.8,

p\ 0.001

0.856, 142.7,

p\ 0.001

SPc 0.387, 15.1,

p\ 0.001

0.363, 13.6, 0.0011 0.389, 15.3,

p\ 0.001

0.696, 55.1,

p\ 0.001

0.996, 5417,

p\ 0.001

0.912, 248.9,

p\ 0.001

SPi 0.261, 8.5, 0.0077 0.497, 23.7,

p\ 0.001

0.466, 20.9,

p\ 0.001

0.550, 29.3,

p\ 0.001

0.996, 5817,

p\ 0.001

0.864, 152.2,

p\ 0.001

ABE 0.347, 12.8, 0.0015 0.290, 9.8, 0.0046 0.273, 9.0, 0.0061 0.512, 25.2,

p\ 0.001

0.996, 5373,

p\ 0.001

0.743, 69.5,

p\ 0.001

AIE 0.318, 11.2, 0.0027 0.228, 7.1, 0.013 0.219, 6.7, 0.016 0.474, 21.6,

p\ 0.001

0.995, 4542,

p\ 0.001

0.718, 61.2,

p\ 0.001

R2, F-statistic, and p values are given in the table.
aScorF, scoring function; DGe, experimental binding free energy; ABE, autodock binding free energy; AIE, autodock

intermolecular energy; GS, 2Goldscore; CS, 2Chemscore; DGb, DGbindGOLD; XP, XPrefine; XPc, XP_CvdW

(Coulomb and van der Waals components of XP); SP, SPrefine; SPc, SP_CvdW (Coulomb and van der Waals com-

ponents of SP); SPi, SP in place.
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To test the performance of efficiency indices with different

types of compounds, the 25 ligands (in 26 protein-ligand com-

plexes) were separated into two groups, small and large ligands

if they were below or above the average MW and also by taking

the 1st quartile (lowest 25%) and 3rd quartile (highest 25%).

The same separation was conducted for polar and nonpolar

ligands only now considering polar surface areas (PSA, in Å2).37

The sum of squares of the residuals (a measure of fitting error)

were then recorded for each ligand complex for the differences

between the calculated and the experimental value as: RSS 5
S(Experimental value 2 Predicted value)2/n, where n is the

number of ligands, and the summation is over all the members in

that group. The effect of molecular size on the efficiency indices

were most marked for ABE, AIE, XP, and SP, where there was a

large reduction of the difference between the errors for the small

ligands compared to the large ones, using both separation meth-

ods. On average, small ligands had RSS errors of 10.19 kcal2/

mol2 for binding free energy compared to 4.89 for large ligands.

The efficiency indices markedly reduced this disparity till having

equal differences between the errors for small and large ligands

(average differences in RSS between small and large ligands:

0.0002 gkcal/mol2 for DG/MW, 0.050 kcal/molNHA for DG/
NHA, 0.234 kcal/molNoC for DG/NoC, 0.021 for log(2DG/P),
and 0.0001 kcal/mol for DG/W). This applied to all efficiency

indices except DG/P where only SP/P produced the smallest dif-

ferences (0.91). Nonpolar ligands (i.e., those with a small polar

surface area) were also at a disadvantage compared to polar ones

(large polar surface area). Using the 1st and 3rd quartiles, the effi-

ciency indices (except DG/P) for ABE, AIE, XP, and SP cor-

rected this bias by reducing the differences in errors from aver-

ages of 9.59 kcal2/mol2 in binding free energy for nonpolar

ligands and 4.27 for polar ligands, so that the differences between

Figure 3. Experimental versus calculated values of the efficiency

indices: (a) DG/NoC (free energy of binding/number of carbons) for

DGb (DGbindGOLD) for 26 protein-drug complexes. R2 5 0.842.

(b) log(2DG/P) (logarithm of (2)free energy of binding/octanol-

water partition coefficient) for DGb for 26 protein-drug complexes.

R2 5 0.997. (c) DG/W (free energy of binding/Wiener index) for

DGb for 26 protein-drug complexes. R2 5 0.885.

Table 4. Linear Regression Correlation Coefficients and Statistics

Between Experimental and Calculated Values for Binding Free

Energy/Octanol-Water Partition Coefficient (DG/P) Efficiency Index.a

Scoring function

or component DG/P
Scoring function

or component DG/P

DGe 1 DGe 1

DGb 0.981, 1247.9, 3.31e222 SPc 0.936, 350.3,

8.9e216

CS 0.989, 2206.8, 3.9e225 SP 0.986, 1686.1,

9.47e224

GS 0.926, 299.7, 4.61e215 SPi 0.995, 4547,

7.09e229

XP 0.879, 174.9, 1.62e212 ABE 0.960, 578.1,

2.6e218

XPc 0.924, 292.8, 6.0e214 AIE 0.930, 317.2,

2.4e217

R2, F-statistic, and p values are given in the table.
aDGe, experimental binding free energy; ABE, autodock binding free

energy; AIE, autodock intermolecular energy; GS, 2Goldscore; CS,

2Chemscore; DGb, DGbindGOLD; XP, XPrefine; XPc, XP_CvdW (Cou-

lomb and van der Waals components of XP); SP, SPrefine; SPc,

SP_CvdW (Coulomb and van der Waals components of SP); SPi, SP in

place.
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the errors between experimental and predicted values were small

and similar for both classes of ligands (average differences in

RSS between nonpolar and polar ligands: 0.0003 gkcal/mol2 for

DG/MW, 0.027 kcal/molNHA for DG/NHA, 0.064 kcal/molNoC

for DG/NoC, 0.009 for log(2DG/P), and 0.0001 kcal/mol for DG/
W). Using below and above average PSA to divide the groups,

only ABE, AIE and XP showed this effect. The original bias may

have risen due to possible overestimation of ligand-protein hydro-

gen bonding interactions by the scoring functions, or due to inad-

equate desolvation energy calculation of the nonpolar ligands by

the scoring functions.

The drugs shown in Table 1 include large and small size

ligands. It is typical for scoring functions to overestimate the

binding energy of a compound because they are additive in na-

ture: the larger the ligand, the more protein-ligand interactions it

will have. However, the introduction of normalizing ligand effi-

ciency measures allow for the smaller size ligands to be com-

pared positively with larger size ligands because the binding

energy is divided by a value which can be related to the molecu-

lar size. In a docking or virtual screening experiment, molecules

with a large number of carbons are no longer favored. In this

way, efficiency indices can repair the errors introduced by the

bias of scoring functions toward large size ligands due to errors

in the calculation of entropy and desolvation energies. It is

promising that the effect was seen on all the scoring functions

and programs.

Molecules with extremely high or low values of hydropho-

bicity or hydrophilicity, that is, with extreme values of P or log

P, can be removed through filters before docking. The DG/P ef-

ficiency index will also penalize those with borderline values, in

addition to having low calculated free energy of binding. Thus,

molecules with unfavorable permeability values can be readily

detected, in combination with the binding free energy. If ranges

for values are established for the different efficiency indices (see

for example Hetényi et al.,33 and also in this present work),

these can tell whether a compound’s calculated efficiency index

is in a favorable range. New efficiency indices can be compared

and tested in a manner analogous to the present work.

Conclusions

We have shown that simple ligand efficiency indices can aid the

drug design process by providing better comparisons of calcu-

lated and experimental values of binding energy. This may

increase the accuracy and reliability of docking programs. We

observed that efficiency indices also add information to the bind-

ing free energy into a single indicator. Permeability of a com-

pound, for example, can be assessed at the same time as the

binding affinity in an efficiency index such as DG/P, especially
if filters are applied to remove compounds with extreme values.

Entropy of a compound may be assessed by DG/W values. DG/
NoC, although simple, is also an effective efficiency index for

improving the trend between experimental and calculated values.

DG/P and DG/W produced the best results, together with DG/
NoC. These efficiency indices can be applied across different

docking programs, scoring functions, or even components of

these. They can also be calculated quickly, likely on the fly.

Compounds can be ranked based on efficiency indices that may

include data such as absorption and metabolic properties in addi-

tion to the free energy of binding, and in this way allow for the

selection of molecules that satisfy several criteria in parallel.

Computational Methods

The structures of protein-drug complexes and their experimental

inhibition constants (Ki) were collected from the PDBbind data-

base v2005,38,39 which contains protein-ligand complex struc-

tural data from the Protein Data Bank (PDB)40 as well as experi-

mental Ki determined for those systems. The collection of all

small-molecule approved drugs was obtained from the DrugBank

database,41 which contains data on drugs approved by the FDA

(U.S. Food and Drug Administration agency). Programs written

in Python were used to extract the ligand names (HET-ID) from

the PDBbind database and to query them in the DrugBank col-

lection to identify those ligands that are approved drugs. All

results were verified visually. The experimental DG was com-

puted with DG 5 2RTlnK, using T 5 258C (298.15 K), and R
5 1.987 cal/Kmol. The program XLOGP v2.042 was used for

calculating the octanol/water partition coefficient (log P) by an

atom-additive method including correction factors.

Docking programs differ by the scoring functions they con-

tain, as well as the way of minimizing the function values. In

our present study, we focused on three main programs that are

widely available and used by computational and medicinal

chemists: GOLD v.3.1,43 Glide v.4.5,44 and Autodock4.45 Their

scoring functions and docking methods are shown in Supporting

Information Table S11. GOLD v.3.143 uses a genetic algorithm

to find the best ligand positioning in a binding site. It can use

two scoring functions: Goldscore43 and Chemscore.46 Chemscore

has a component called DGbinding (DGb), which was also used

for our correlations. Parameters for runs were: run_flag 5

Figure 4. Correlation between experimental and calculated effi-

ciency indices for DG, DG/MW, DG/NHA, DG/NoC, log(2DG/P),
DG/W, and DG/P for the scoring function component DGb

(DGbindGOLD) for 26 protein-drug complexes.
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RESCORE, in addition to default parameters for the genetic

algorithm. Waters were switched to ON.

Glide v4.5 (2007) uses a hierarchical search, and has the

scoring functions XP and SP,44 which are a proprietary modifi-

cation of Chemscore.46 In addition, we also employed the com-

ponent C_vdW (a combination of Coulomb and van der Waals

terms). Default parameters for runs were used.

Autodock v4.0 also uses a genetic algorithm to find for the

best solutions for docked ligands. It uses one scoring function,

which produces a binding free energy (ABE).47 We also

Figure 5. Box plot comparisons of free energies and efficiency indices for experiment and several

scoring functions: (a) Free energy of binding (DG). (b) Free energy of binding/molecular weight (DG/
MW). (c) Free energy of binding/number of heavy atoms (DG/NHA) efficiency index. (d) Free energy

of binding/number of carbons (DG/NoC) efficiency index. (e) Logarithm of the (changed sign) free

energy of binding/octanol-water partition coefficient (log(2DG/P)) efficiency index. (f) Free energy of

binding/Wiener index (DG/W) efficiency index. (g) Free energy of binding/octanol-water partition coef-

ficient (DG/P) efficiency index. DGe, experimental binding free energy; ABE, autodock binding free

energy; AIE, autodock intermolecular energy; GS, 2Goldscore; CS, 2Chemscore; DGb, DGbindG-
OLD; XP, XPrefine; XPc, XP_CvdW (Coulomb and van der Waals components of XP); SP, SPrefine;

SPc, SP_CvdW (Coulomb and van der Waals components of SP); SPi, SP in place.
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employed the component of intermolecular energy (AIE). Pa-

rameters used that were different than default values: spacing

5 0.375 Å, npts 5 40 40 40, ga_pop_size 5 150, ga_num_

evals 5 20,000,000, ga_num_generations 5 27,000, tran0 co-

ordinate equal to the ‘‘about coordinates’’, quat0 5 1. 0. 0. 0.,

and dihe 5 0.

Protein and ligand structures already contained hydrogens

from the PDBBind dataset. Protein structures were used

including the metal atoms and select water molecules that

were interacting with protein and ligand in the binding site.

The ‘‘toggle’’ setting was used for these special bridge water

molecules in GOLD. Docking runs were calculated both

including and excluding select crystallographic water mole-

cules. The case which produced a binding energy closest to

the experimental was kept. Most of the complexes which

included select water molecules had a small effect on the

binding energy and efficiency indices as they differed by less

than 1 kcal/mol from the ‘‘dry’’ cases in binding free energy,

as well as being in the same range and evenly distributed for

binding free energy and efficiency indices as the cases without

water molecules. The complete list of water molecules is

shown in Supporting Information Table S7. Water molecules

were included only if they had medium to low crystallographic

B-factors, made contacts with the protein, were within 4.5 Å

of the ligand, and were at least partially occluded from bulk

solvent since these tightly bound water molecules have a

higher chance of remaining bound to the protein (remaining

conserved in several protein structures),13–15 and can be con-

sidered an integral part of the protein-ligand complex. As

such, these specially selected crystallographic water molecules

are included in the binding free energy, as well as in the effi-

ciency indices. There was no additional water inclusion or re-

moval when calculating the efficiency indices, which take their

binding energy direct from the complex. Efficiency indices are

unique to each protein and each ligand in a biomolecular com-

plex, although general trends and ranges can be observed

across complexes. Methotrexate (3), for example, forms two

complexes with different proteins in the dataset, consequently

with different binding free energies and efficiency indices.

Most of the protein-drug structures which included bridge

water molecules mediating their interaction had high crystal

structure resolutions, from 1.4 Å and on average lower than 2

Å (median of 1.95 Å) which may increase the probability of

detecting reliable water molecule electron density.48 They

included a wide diversity of ligands, though the exposed, shal-

low complex of the small, relatively nonpolar aminocaproic

ligand (2) did not have bridging waters, nor did the completely

buried dexamethasone (13).

Complexes were prepared for the dockings by minimizing

in water with generalized Born (GB) implicit solvation and a

steepest descent method to a gradient threshold of 239 kcal/

molnm, followed by a minimization in water (GB) with a trun-

cated-Newton conjugated gradient method to a gradient thresh-

old of 143.4 kcal/molnm using MacroModel.49 Statistical tests

and box plots were performed using the package R for statisti-

cal computing.50 Marvin Calculator Plug-ins were used for the

calculation of ligand molecular formulas and molecular mass

(MW).37
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