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Abstract: Many chemicals that enter the environment, food chain, and the human body can disrupt
androgen-dependent pathways and mimic hormones and therefore, may be responsible for multiple
diseases from reproductive to tumor. Thus, modeling and predicting androgen receptor activity is
an important area of research. The aim of the current study was to find a method or combination of
methods to predict compounds that can bind to and/or disrupt the androgen receptor, and thereby
guide decision making and further analysis. A stepwise procedure proceeded from analysis of protein
structures from human, chimp, and rat, followed by docking and subsequent ligand, and statistics
based techniques that improved classification gradually. The best methods used multivariate logistic
regression of combinations of chimpanzee protein structural docking scores, extended connectivity
fingerprints, and naïve Bayesians of known binders and non-binders. Combination or consensus
methods included data from a variety of procedures to improve the final model accuracy.

Keywords: androgen receptor; bayesian; multivariate logistic regression; chemical fingerprints; ecfp;
docking; toxicity; human; chimp; rat

1. Introduction

Concern has been rising due to the fact that many environmental factors can modulate
the androgen receptor (AR) pathway: agricultural and industrial chemicals, pharmaco-
logical drugs and chemotherapeutics, aging, hyperthermia, and chronic infection, alcohol,
tobacco, and other drugs [1–4]. These chemical agents enter the waterways, food chain,
and affect other environments. In vivo rodent models are one way to try to elucidate the
exact roles of AR in reproduction and the molecular mechanism of AR modulation in
reproductive health [1–4]. Modulation of the AR has multiple biological effects on species
in the environment, on health, and diseases. These include important roles in the develop-
ment and maintenance of reproductive [5], musculoskeletal [6,7], cardiovascular [8–10],
immune [11,12], nervous [13–15], and hematopoietic [16,17] systems. The AR has also been
shown to be associated with the development of prostate [18], breast [19,20], bladder [21],
liver [22], kidney [23], and lung [24] tumors [25]. Chemicals that mimic hormones can
cause abnormalities and undesirable effects in the hormonal system, which in turn can
lead to many of the aforementioned diseases. However, the number of synthesized and
commercially produced chemicals is constantly increasing, resulting in more of them reach-
ing the environment, the food chain, and eventually the human body. The compounds of
most concern are those that may disrupt hormone-receptor binding in the body, or prevent
other interactions that are responsible for metabolism, transport, or synthesis of substances,
such as endocrine disrupting chemicals (e.g., disrupting the hormonal system) [5,26]. For
example, AR binding compounds, or those that interfere with androgen-dependent path-
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ways, can be responsible for increased infertility and decreased sperm counts [27], prostate
cancer, testicular dysgenesis syndrome, among others [28,29].

AR pathway interactions may or may not be due to ligand binding on the androgen
receptor [30]. The former, ligand-dependent, are in turn divided into two: the androgen
molecule/AR pathway event involves DNA (so-called genomic); or where interaction with
DNA does not occur (so-called non-genomic) [30]. These AR-activity related interactions
can be modeled with a variety of computational approaches [31]. Different techniques
can be used to predict the binding of compounds to a receptor, or to infer the binding or
activity of a compound. If a protein structure is available, structure-based methods may
be used [32–34]. Androgen receptor binding has been modeled for toxicology, but also for
drug design [32]. Ligand-based methods that use statistical approaches are an alternative
for modeling androgen receptor binding without using the structure of the protein, mostly
QSAR methods, mainly dealing with specific series of compounds, but also with general
series of compounds [31,35–39]. Even if there is a wealth of data on the androgen receptor,
it is generally recognized that this is difficult system to model [31], as well as expensive
and difficult to assay in vivo, in human, and other model systems.

Modeling opportunities were made available recently via the US Environmental
Protection Agency (EPA) Collaborative Modeling Project for Androgen Receptor Activity
(CoMPARA) [40]. The CoMPARA project used data from the integrated experimental
and computational approach that combined data from 11 ToxCast and Tox21 in vitro high
throughput screening (HTS) assays measuring activity at multiple points along the AR
pathway: receptor-binding, coregulator recruitment, chromatin-binding of the mature
transcription factor, and gene transcription [41]. Within the CoMPARA project, different
modeling approaches were used by the consortium of 25 collaborating research teams to
evaluate the androgenic potential of compounds, and finally, the prediction results and
modelling methods were combined into a consensus [42]. A similar collaborative project
was carried out previously to predict compounds with potential estrogenic activity in the
Collaborative Estrogen Receptor Activity Prediction Project (CERAPP) [43].

The aim of the present study was to find a method or combination of methods,
including consensus modeling, to allow predicting compounds that may bind to the
important AR and/or disrupt androgenic pathways, and through this pathway may cause
undesired and dangerous health outcomes. These predictions, in turn, can guide decision
making and further analysis of compounds. The consensus combinations are employed for
molecular docking, chemical fingerprints, naïve Bayesian, and logistic regression methods.
Predictions of the final model of this study were originally submitted to the CoMPARA
project as one of the three modeling methods of our research group, but were not included
into the overall consensus model as during the course of the CoMPARA project, a limit
was set for the submissions by one research group.

2. Methods
2.1. Data Sets and Molecular Structures

The dataset of active, i.e., binding compounds (n = 205, composed of both agonists
and antagonists), and inactive (i.e., non-binding, n = 1480) compounds was obtained from
the CoMPARA project website [40,41], and named training set (n = 1685, Table S1). A
validation data set (n = 20, Kleinstreuer et al. [41]) with AR reference compounds included
was used, that contained indication of their binding status. An evaluation data set (n = 3882,
Table S2) was also provided by the CoMPARA project organizers [42] and was processed
and scored with the best model trained with the training set. The status for each binding
compound was reported as “Binding” in the SDF file (ToxCast_AR_Binding-2016-11-17.sdf).
We considered the field “hitcall” in the SDF file that divided the compounds into “Active”
and “Inactive” in order to test the procedure. This gave nactive = 453, ninactive = 3429. All
chemical structures were used as the QSAR ready SMILES provided within the CoMPARA
project; ‘QSAR ready’ means that salts were converted into neutral form, counterions were
removed, tautomers were normalized, etc. (detailed description about datasets and their
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assembly are provided in reference [42]). Minimized 3D structures of the ligands were also
prepared by the CoMPARA organizers.

2.2. Molecular Docking

The data provided by the CoMPARA organizers contained data including in vitro
compound assays on chimp, human, and rat androgen receptors [41]. In the present work
we were more interested in grouping the actives as binders, irrespective if they were either
agonist or antagonist, as both classes would presumably bind to the AR. The inactive
compounds (organizer definition ‘inactive’ was Activity concentration >800 µM) were
taken to be non-binders. Docking was performed using Glide XP v. 2017, as contained
in the Schrodinger suite [44], with conditions as described previously, [34] with the main
difference of docking being performed in the orthosteric site of AR using 15 Å inner box
and 40 Å outer search boxes.

2.3. Protein Structures

The protein structure for the androgen receptor for chimp (Pan troglodytes), human
(Homo sapiens), and rat (Rattus norwegicus) species were downloaded from the PDB [45],
with structure codes (resolution) 1t7r (1.4 Å), 3v49 (1.7 Å), and 3g0w (1.95 Å), respectively.
These structures were selected based on the availability of a protein-ligand complex, the
highest possible X-ray crystal structure resolution, and the completeness of amino acid
residue sequence. The best crystal structure among these was selected as the one that gave
the best separation of known binders and non-binders. Structure 1t7r contains the AR in
complex with 5-alpha-dihydrotestosterone at a resolution of 1.4 Ångströms.

2.4. Characterization and Comparison of Ligands

Chemical fingerprints were generated using Extended Chemical Fingerprints (ECFP),
a circular fingerprint as encoded by Instant JChem [46]. Distances between chemical
fingerprints were calculated by Tanimoto (a.k.a. Jaccard, T) coefficient for the case of a
binary fingerprint (bit string), according to Equation (1), where NA and NB are the number
of bits set in the bit strings of molecules A and B, respectively, and NA&B is the number of
bits that are set in both.

T(A, B) =
NA&B

NA + NB − NA&B
(1)

The dissimilarity or distance between molecules is calculated according to Equation (2),
where T(A, B) is the Tanimoto coefficient for molecules A and B.

D(A, B) = 1− T(A, B) (2)

2.5. Naïve Bayesians

Bayesian classifiers were calculated according to Equation (3), where µ is the mean,
σ is the standard variation, and x is the independent variable, in this case the docking
scores [47].

P(x) =
1√

2πσ2
e−

(x−µ)2

2πσ2 (3)

The probabilities are calculated for both binders and non-binders and their ratio for the
values calculated for a new compound determines their classification into either group, i.e.,
if a probability for a compound was higher for the binding group than for the non-binding
group, the compound was classified as a binder and vice versa.

2.6. Multivariate Logistic Regression

Multivariate logistical regression [48] was used according to Equation (4), where Pcmpd
is the probability of a compound of belonging to class 1 (classified as binding), or class 0
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(coded non-binding), based on the variables X1 . . . n that are properties of the compound
and their coefficients α1 . . . N.

Pcmpd =
e(β+α1X1+... αnXn)

1 + e(β+α1X1+... αnXn)
(4)

The linear form of Equation (4) (logit(Y)) can have infinitely large or small values
for the dependent variable, so instead of ordinary least squares, maximum likelihood
techniques are used to maximize the value of the log likelihood (LL) function, which
indicates how likely it is to obtain the observed values of Y, given the values of the
independent variables and the parameters β, α1, . . . , αn.

2.7. Performance Analysis

The confusion matrix is usually defined as the collection of four fields: true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). Using these values,
common measures can be calculated that allow to evaluate the quality of a prediction,
such as specificity (SP): TN/(TN + FP), sensitivity (SE): TP/(TP + FN), accuracy (Acc.):
(TP + TN)/(TP + FP + FN + TN), and Matthews correlation coefficient (MCC). The MCC
was calculated for all procedures according to Equation (5).

MCC =
TP·TN − FP·FN√

(TN + FN)·(TN + FP)·(TP + FN)·(TP + FP)
(5)

For more detailed analysis, we added several other measures: the probability that a
chemical predicted as a binder is actually a binder (PPV, Equation (6)), the probability that
a chemical predicted as a nonbinder is actually a nonbinder (NPV, Equation (7)), positive
(+LR, Equation (8)) and negative (−LR, Equation (9)) likelihood ratios [49], and modified
correct classification rate, giving higher scores for models with optimal balance between
SE and SP (BCR, Equation (10)) [50].

PPV =
TP

TP + FP
(6)

NPV =
TN

TN + FN
(7)

+ LR =
SE

1− SP
(8)

− LR =
1− SE

SP
(9)

BCR =
SE + SP

2
× (1− | SE− SP| ) (10)

2.8. Availability of Best Model

The numerical raw data and best classification model is provided in the QSAR Data
Bank format [51] and uploaded to the QsarDB repository [52,53]. A digital object identifier
(DOI) is assigned for the model and data [54].

3. Results
3.1. Androgen Receptor from Chimp as Model Protein

The self-docking of the known binder dihydrotestosterone into structure 1t7r gave
a strong docking score of −11.91 kcal/mol. The root-mean-square deviation (RMSD) of
atom positions between the docked pose and the initial position of the co-crystallized
ligand was 0.32 Å, indicating a good fit and small deviation from the crystal structure.
Another known binder, testosterone, also scored a strong docking score of−10.32 kcal/mol.
To widen the window for the predictions, we decided heuristically to use a (relatively
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strong) threshold value of −7 kcal/mol as this would correspond approximately to ligand
submicromolar Kd values. After docking the known binders and known non-binders to
the three different protein structures from the different species, the results showed best
agreement with experimental values (binding status) using the chimp protein structure,
rather than using human or rat protein structures in molecular docking, or a combination
of the three (Figure 1). Receiver-operator curves and area under the curve (AUC) values
provided further validation, giving AUC values of 0.832 for chimp, 0.797 for human, and
0.744 for rat AR.
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Figure 1. Receiver-operator curves for docking to the human (in yellow), rat (in purple), and chimp
(in green) androgen receptor as compared to a random pick (diagonal line). Chimp AUC = 0.832;
human AUC = 0.797; and rat AUC = 0.744.

The chimp docking results distribution was analyzed for both binding and non-
binding compounds in the training set (Figure 2), showing that around half of the com-
pounds for both binding and non-binding compounds had a docking score of zero, while
the other half was indeed separated, with binding compounds having values distributed
over deeper docking scores. This good resolution for compounds with a non-zero docking
score prompted to search for a further way to separate the compounds that did not resolve
well, i.e., those binding and non-binding compounds that had a docking score of zero.

3.2. Consensus Methods for Best Performance

Subsequently, various methods and combinations thereof were applied to separate the
binding and non-binding compounds (Figure 3). For this, several different metrics were
checked for each procedure, with the Acc. and MCC as the primary metrics to guide the
improvement of the procedures. The range of MCC is from−1, total disagreement between
prediction and observation, to +1, a perfect prediction. Different procedures applied to
the training set and their sequential relationship are schematically viewed in Figure 3,
where horizontal levels from top to bottom show the complexity of combinations and path
towards the improvement of the Acc. and MCC values.
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A first attempt at separation used a threshold on the docking scores in order to classify
compounds into binding and non-binding. Different values were tested, with the best being
a threshold score value of −7 kcal/mol. Compounds with scores above this level were
classified as non-binders, and scores below this level were classified as binders (Figure 3:
Procedure 1). Despite the fact that the Acc. value is relatively good, the MCC value is the
lowest of all the tested Procedures (Table 1).

Table 1. True positives (TP), true negatives (TN), false positives (FP), false negatives (FN), specificity (SP, %), sensitivity (SE,
%), accuracy (Acc., %), and Matthews correlation coefficient (MCC) for 13 different procedures for the training set.

Procedure TP TN FP FN SP SE Acc. MCC

1 Docking score threshold 97 1157 323 108 78.18 47.32 74.42 0.1926
2 Bayesian on scores 89 1232 248 116 83.24 43.41 78.40 0.2179
3 Logistic regression on Bayesian 100 1078 402 105 72.84 48.78 69.91 0.1545
4 Modified Bayesian 90 1233 247 115 83.31 43.90 78.52 0.2224
5 Fingerprints (ECFP) 189 795 685 16 53.72 92.20 58.40 0.3004
6 Docking scores then ECFP 169 978 502 36 66.08 82.44 68.07 0.3240
7 ECFP then docking scores 191 712 768 14 48.11 93.17 53.59 0.2725
8 Logistic regr. on docking scores and ECFP 71 1463 17 134 98.85 34.63 91.04 0.4920
9 Consensus Docking and ECFP else 8 170 1054 426 35 71.22 82.93 72.64 0.3702
10 Consensus Bayesian and ECFP else 8 117 1302 178 88 87.97 57.07 84.21 0.3875

11 Logistic regr. on docking scores and ECFP
and ratio of Bayesian 69 1463 17 136 98.85 33.66 90.92 0.4829

12 Logistic regression on and Bayesian avgs.
and fingerprints 42 1462 18 163 98.78 20.49 89.26 0.3400

13 Logistic regression on docking scores and
Bayesian avgs. and fingerprints 75 1469 11 130 99.26 36.59 91.63 0.5324

Naïve Bayesian classifiers were constructed with the docking scores of both active
(binding) and inactive (non-binding) compounds, resulting in mean values of µ = −8.91
and −5.97 kcal/mol, and standard deviations (SD) = 1.94 and 2.01, respectively. The results
of using only this classifier on its own are shown in Table 1: Procedure 2.

Procedure 3 was similar to Procedure 2, using a univariate logistic regression on the
naïve Bayesian classifier probabilities. Procedure 4 was a modification of the Bayesian clas-
sifier, in which the docking score was used as in the first procedure, reducing the number
of false positives by assuming zeroes were non-binding compounds. Both procedures did
not improve the MCC values, while giving reduced Acc. values.

The following, Procedure 5, was ligand-based and involved calculating the distance
between ECFPs for a compound and the known binders and non-binders. The smaller
the distance between the ECFPs and each group, either the average distance towards
known binders or average distance to known non-binders, would indicate the similarity
of a compound to either group. This procedure resulted in an improved separation and
therefore improved MCC at 0.3, while Acc. decreased.

Docking scores and ECFPs were used together for Procedure 6. Here, the threshold
of −7 kcal/mol was used first on the docking scores, and the compounds that registered
0 kcal/mol were then separated using ECFPs. This combination had again the effect of
improving the separation and thus, the Acc. and MCC values. Procedure 7 was similar, but
was used in the inverted order, i.e., if the ECFP predicted a non-binder, then the docking
score threshold was used. The latter procedure was not as effective as the former, giving a
lower MCC and the lowest Acc. among Procedures.

For Procedure 8, a logistic regression was used on the docking scores and difference
between ECFP distances to binders and non-binders. This improved the separation and
provided the increase in MCC to 0.492 and the second best Acc. among the procedures.
Procedure 9, used a sequence such as in Procedure 6, first docking scores, then ECFP, and
then, if a zero was still obtained, used the logistic regression in Procedure 8. Neither this,



Int. J. Mol. Sci. 2021, 22, 6695 8 of 13

nor Procedure 10 were better than Procedure 8. Procedure 10 was analogous to procedure 7,
adding the logistic regression from 8 to the sequence.

Procedure 11 used a new logistic regression on the docking scores, ECFP differences,
and ratio of Bayesian predicted classifications. This resulted in better separation than 10,
an MCC to 0.4829 and third best Acc. Procedure 12 was similar to 11, but employed the
Bayesian averages instead of the ratio. However, 11 and 12 performed similarly.

Out of all the combinations, a multivariate logistical model emerged as the best per-
forming (Procedures 8 and 11). The best equation obtained was Procedure 13, represented
as Equation (11) (http://dx.doi.org/10.15152/QDB.235, accessed on 21 June 2021).

Pcmpd =
e

1 + eY =
1

1 + e−Y (11)

Y = 26.169 – 0.0175∗ChimpDockScore − 98.582∗avgDAct + 66.953∗avgDInact
+3.584∗ PAct_dockChimp – 8.594∗PInact

where

Y = 26.169 – 0.0175∗ChimpDockScore − 98.582∗avgDAct + 66.953
∗avgDInact + 3.584∗ PAct_dockChimp – 8.594∗PInact

This final model includes five descriptors: the docking score for the compound with
chimp protein (ChimpDockScore), the average of the distances to the known active (toxic)
chemicals (avgDAct), the average of the distances to the known inactive (non-toxic) chemi-
cals (avgDInact), the Bayesian probability value for the compound according to the distribu-
tion of known actives (toxic) compounds towards the chimp protein (PAct_dockChimp), and
the Bayesian probability value for the compound according to the distribution of known
inactives (non-toxic) compounds towards the chimp protein (PInact).

For Equation (11), Procedure 13 (http://dx.doi.org/10.15152/QDB.235), the best
indicator of performance was recorded by a LogLikelihood (LL) value of −407.619. The
values for true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) were: 75, 1469, 11, and 130, respectively. SP (true negative rate) = 99.26%, SE (true
positive rate) = 36.59%, Accuracy = 91.63, the first and the last being the highest among
tested procedures. The MCC gave a value of 0.5324, which is better than random and the
best result for MCC obtained from the several options tried. Removal of 15 compounds
referred to as likely false positives [55] gave a slightly better value of MCC = 0.5364. This
procedure resulted also in the highest Accuracy value.

In more detailed analysis, NPV, PPV, +LR, −LR, and BCR statistics showed a slightly
different view of the models (Table 2). In computational toxicology, one wishes to predict
potentially harmful chemicals, minimizing FNs. This implies a classification model is
usable even if it gives a high rate of FPs (low PPVs) but a low number of FNs (high
NPVs) [56]. With this criterion, Procedure 8 (logistic regression on docking scores and
ECFPs) gives the best model, with one of the lowest PPVs of 19.92, and the highest NPV
of 98.07.

Positive (+LR) and negative (−LR) likelihoods ratios and balanced classification rate
(BCR) are considered to be independent of the data distribution within the training set
(noticeably unbalanced) [56]. By these measures, Procedure 8 again has the best, i.e., lowest,
−LR value of 0.1420. On the other hand (admittedly less important in computational toxi-
cology, since the objective is to minimize FNs), the best (highest) +LR value of 49.22 belongs
to Procedure 5 (ECFPs). Finally, Procedure 10 (consensus Bayesians and ECFP, else 8) had
the highest BCR value of 0.6805. Triscuizzi et al. using a different procedure reported
comparable values of +LR = 14.33 at SE = 0.25 for crystal structure 2am9; −LR of 0.38 at
SE = 0.75 for crystal structure 2pnu; BCR of 0.62 at SE = 0.75 for 2pnu [56].

http://dx.doi.org/10.15152/QDB.235
http://dx.doi.org/10.15152/QDB.235
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Table 2. PPV (probability of predicted binder), NPV (probability of predicted nonbinder), posi-
tive (+LR) and negative (−LR) likelihood ratios, and BCR (modified correct classification rate) for
13 different procedures for the training set.

Procedure NPV PPV +LR −LR BCR

1 91.4145 19.8795 2.1133 0.7999 0.2774
2 91.3944 22.6107 2.1079 0.6793 0.4356
3 91.1243 19.9203 1.7959 0.7032 0.4618
4 91.4562 26.7062 2.6270 0.6735 0.3855
5 91.8699 87.2093 49.2239 0.6389 0.2535
6 98.0271 21.6247 1.9920 0.1453 0.4488
7 96.4497 25.1863 2.4305 0.2657 0.6211
8 98.0716 19.9166 1.7955 0.1420 0.3881
9 91.6093 80.6818 30.1521 0.6613 0.2388

10 96.7860 28.5235 2.8810 0.2397 0.6805
11 93.6691 39.6610 4.7454 0.4880 0.5011
12 91.4947 80.2326 29.3027 0.6711 0.2306
13 89.9692 70.0000 16.8455 0.8049 0.1294

3.3. Validation of the Best Model

Using the best procedure, the AR pathway in vitro reference compounds presented
in Kleinstreuer et al. [41] were used to further validate the model after recording a high
docking score for the co-crystallized ligand. The results of the predictions on compounds
that had verified experimental data as agonist and antagonist (i.e., without NA values),
or that had only one strong or moderate value with the other being NA, are presented in
Table 3.

Table 3. AR pathway in vitro reference compounds and their predicted class according to Proce-
dure 13.

CAS Name Agonist Antagonist Predicted Correct

52806-53-8 hydroxyflutamide NA Strong 0 X
90357-06-5 Bicalutamide NA Strong 0 X

122-14-5 Fenitrothion NA Strong 0 X
63612-50-0 Nilutamide Negative Moderate 0 X

427-51-0 cyproterone acetate Weak Moderate 1 Yes
80-05-7 bisphenol A NA Moderate/weak 1 Yes
330-55-2 Linuron NA Moderate/weak 0 X

13311-84-7 Flutamide Negative Moderate/weak 0 X
67747-09-5 Prochloraz Negative Moderate/weak 0 X

789-02-6 o,p′-DDT Negative Weak 0 Yes
60168-88-9 Fenarimol Negative Very weak 0 Yes

58-18-4 methyl testosterone Strong Negative 1 Yes
58-22-0 Testosterone Strong Negative 1 Yes
63-05-8 4-androstenedione Moderate Negative 1 Yes

1912-24-9 Atrazine Negative Negative 0 Yes
52918-63-5 Deltamethrin Negative Negative 0 Yes
10161-33-8 17b-trenbolone Strong NA 1 Yes

797-63-7 Levonorgestrel Strong NA 1 Yes
68-22-4 Norethindrone Strong NA 1 Yes
521-18-6 5a-dihydrotestosterone Strong NA 1 Yes

The results in Table 3 on the reference compounds show a good balance of 13 successful
predictions versus seven mispredictions. If the moderate/weak compounds bisphenol
A, linuron, flutamide, and prochloraz are classified as weak instead of moderate, then
the balance of correct to incorrect predictions becomes 15 versus 5, respectively (75%).
It is interesting to note that the most successful procedure combined structure-based
values: docking to the chimp protein; ligand-based values: distances between extended
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connectivity fingerprints; and statistical comparisons: naïve Bayesian classifiers. This may
reflect the need to use a variety of methods for a complex dataset as the one provided in
the CoMPARA project.

An evaluation set provided by the organizers was also used. Results showed reason-
ably good Acc. of 0.88 and lower MCC values than for the training set, with an MCC of
0.1676 (TP = 36, TN = 3395, FP = 34, FN = 418; SP = 0.99, SE = 0.079) for Procedure 13,
and a slightly better MCC = 0.2036 and lower Acc. of 0.75 (TP = 217, TN = 2713, FP = 716,
FN = 235) for Procedure 5. These MCC values are still higher than random that would
correspond to MCC = 0, lower than those obtained for the training set, yet appropriate
for an evaluation set that was nearly twice the size of the training set and also highly
unbalanced. They are comparable to the MCC obtained using support vector machines
(SVM) in a different study by other groups on the same evaluation set [57]. Comparison
of MCC values also clearly shows that MCC is not sufficient as the only measure for
classification measurement on imbalanced datasets [58]. Procedure 10 has a BCR of 0.68,
which is comparable to that obtained on the same evaluation set by a different group using
SVM [57]. The Acc. values for Procedures 13 and 5 are comparable to those of Manganelli
et al. using SVM, artificial neural networks (ANN), decision trees (DT), SARpy1 (fragment
SAR [59]) SARpy2 [59], consensus models [57]. In parallel with this study, we developed
a model using a random forest (RF) algorithm for balanced data sets, which did not use
molecular docking data and were simpler in design than the current best model and gave
the evaluation data set an Acc. of 0.78 (binders model only) [60]. A later development of
the present study, the analysis of a balanced data set with deep neural networks (DNN),
gave improved Acc. of 0.91 (MCC = 0.4685) [61].

4. Discussion

For the protein structural information part of this study, the best crystal structure
for these purposes was employed using the available information at the time (see below).
This is distinct from the approach of Trisciuzzi et al. [56] who used GOLD software to
dock ligand decoys on nine protein structures, separating decoys from known binders and
studying their applicability domain, choosing structure 2pnu (resolution of 1.65 Ångströms)
instead. The assessment in the present study was done rather on the basis of the higher
resolution of the crystal structure, amino acid sequence, and complex availability, and
we chose structure 1t7r for the chimp AR, instead. In the present work, this was the
crystal structure that best separated binders from non-binders among the CoMPARA data.
Comparing results, both approaches are comparable in their active recall rate. Different
measures such as MCC, BCR, +LR, and –LR give positive results for Procedures 13, 8,
and 10. The consensus model for Procedure 13 is also available for the use at the QsarDB
repository (http://dx.doi.org/10.15152/QDB.235 accessed on 21 June 2021.).

Structure-based design is directly impacted by the X-ray crystal protein structures and
conformations of these that are employed. In the present work, it could be that the chimp
AR structure best captures the conformation for binding actives/inactives, over those of
rat and human.

The data set provided was challenging for any method, given the fact that the data
is strongly unbalanced, containing a far larger number of non-actives than actives. This
was true for the training set, nactive = 205, ninactive = 1480; as well as for the evaluation set,
nactive = 453, ninactive = 3429. In addition, the protein structural information was not enough
on its own to separate all the compounds. Though it could distinguish between binders and
non-binders in the training set for those compounds that produced a docking score, there
were a large number of compounds that had a docking score of 0, which required the use
of additional techniques such as ligand-based ECFP fingerprints and statistical methods,
such as Bayesians and combinations in consensus multivariate logistic regressions.

http://dx.doi.org/10.15152/QDB.235


Int. J. Mol. Sci. 2021, 22, 6695 11 of 13

5. Conclusions

A variety of methods were systematically elaborated to model the binding of com-
pounds to the androgen receptor for unbalanced data in order to help predict possible
androgen pathway-disrupting compounds. The best methods out of the 13 tested included
a multivariate logistic regression on values combining structure-based docking scores on
the chimp protein, ligand-based Tanimoto dissimilarity distances using extended chemical
fingerprints, and statistic comparisons between known binders and non-binders to the
androgen receptor; as well as a multivariate logistic regression on docking scores and
ECFP fingerprints. The best model includes only five descriptors: the docking score for
the compound with chimp protein (ChimpDockScore), average of the distances to the
known active (toxic) chemicals (avgDAct), average of the distances to the known inactive
(non-toxic) chemicals (avgDInact), the Bayesian probability value for the compound accord-
ing to the distribution of known actives (toxic) compounds towards the chimp protein
(PAct_dockChimp), and the Bayesian probability value for the compound according to the dis-
tribution of known inactive (non-toxic) compounds towards the chimp protein (PInact). The
model performed satisfactorily on the evaluation test provided in the CoMPARA project
using MCC, BCR, and Acc. measures, as well as on an external reference set of compounds
used in other studies and has easily interpretable variables and physicochemical reasoning.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22136695/s1.
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