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Abstract: Drug-target binding affinity and pharmacokinetics are equally important factors of drug design. Simple molecular properties 
such as molecular size have been used as pharmacokinetic and/or drug-likeness filters during chemical library design and also correlated 
with binding affinity. In the present study, current property filters are reviewed, a collection of their optimal values is provided, and a 
statistical framework is introduced allowing calibration of their selectivity and sensitivity for drugs. The role of ligand efficiency indices 
in drug design is also described. It is concluded that the usefulness of property filters of molecular size and lipophilicity is limited as 
predictors of general drug-likeness. However, they demonstrate increased performance in specific cases, e.g. in central nervous system 
diseases, emphasizing their future importance in specific, disease-focused library design instead of general drug-likeness filtering. 
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1. INTRODUCTION 

The effects of drug molecules are produced by their interactions 
with one or more macromolecular targets [1, 2], constituents of the 
human body. Therefore, small molecule drug design strategies 
involve multiple screening steps [3, 4] using the structure [5] of 
drug candidates (ligands) in complex with targets and also the 
corresponding thermodynamic measures of equilibrium binding 
affinities [6], the free energy changes (ΔG). In general, an 
appropriate ΔG is a necessary but not a sufficient property of a 
successful candidate as pharmacokinetic, toxicological, etc. 
characteristics also influence drug-likeness [7]. 

Molecular properties of small compounds have been 
extensively used as descriptors in structure-activity relationships [8, 
9]. For example, molecular weight (MW) is atom-type sensitive and 
related to the molecular size; logP is a measure for partitioning of 
compounds between lipophylic and aqueous phase; number of 
heavy atoms (NHA) is the simplest molecular property providing a 
crude estimate of the size of a molecule; Wiener index, a 
topological descriptor characterizes the compactness of a molecule 
and is proportional to the molecular surface area [10, 11]. Such 
molecular properties were also adopted for the prediction of 
complex physiological properties and pharmacokinetics: absorption 
[12], or blood brain barrier penetration [13, 14], and their use 
culminated in the definition of general drug-likeness ranges. These 
empirical ranges of the properties were proved to be useful as 
property filters in the design of compound libraries of drug 
screening [15-20]. Notably, the selection of high quality (drug-like) 
compound libraries [3, 21-23] is a primary and key step of the 
screening process. 

Besides their connection to pharmacokinetics, it has been 
shown in numerous studies that the above size-dependent filters 
(MW, NHA) are also coupled to ∆G as they correlate with the 
(maximal) binding affinity achievable by a ligand. To decouple ∆G 
from ligand size, efficiency indices (EI, also called ligand 
efficiencies or binding efficiencies) have been defined dividing ∆G 
by NHA or MW [24].  

The present review sketches how complex phenomena of 
pharmacokinetics and equilibrium binding are coupled with the 
above molecular properties. An overview of their use is provided, 
and a summary of available correlations of ligand-based properties 
with ∆G is assembled. The role of EIs is discussed, and limitations 
of the general drug-likeness concept are analyzed. Selectivity and 
sensitivity of the property filters are defined, and a statistical 
decoupling of ∆G from the properties is suggested for 
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pharmacokinetics-focused analyses. Besides general drug-likeness, 
disease- and target-specificity is discussed and future perspectives 
are outlined.  

2. MOLECULAR PROPERTY FILTERS DESCRIBING 
DRUG-LIKENESS 

Filtering of large compound sets generated by combinatorial or 
other techniques [25, 26] is a central issue of library design. As 
Martin and Critchlow showed [27], merely random selection of 
compounds for high throughput screening (HTS) is poor both in 
structural diversity and in distribution of physicochemical 
properties. Random libraries are systematically biased toward 
heavy, flexible compounds that have very high or very low 
lipophilicity and possess inappropriate bioavailability. Thus, the 
need for effective filtering to produce ‘drug-like’ libraries was early 
recognized and several groups have developed filters based on the 
analysis of molecular property distribution in available drug 
databases. The present paper is focused on the analysis of simple 
molecular properties such as MW or logP coupled to both 
pharmacokinetics and ∆G (Introduction). Other filters including 
information on e.g. functional groups [28] are beyond the scope of 
this study. 

2.1. Definition of Drug-Likeness  

The first drug-likeness studies dealt with pharmacokinetic 
properties of drug candidates. Lipinski et al. [29] found that poor 
absorption or permeation is more likely if ligand properties such as 
MW or logP fulfill the ‘rule of 5’ (Ro5, Table 1) criterion. Fecik et 
al. [30] also analyzed the relationship between MW and oral 
bioavailability. Clark and Pickett [31] describe the term general 
drug-likeness filtering. According to their definition, such filters 
incorporate substructure searches for toxic or reactive groups and/or 
include limits on molecular properties which may be generally 
useful in drug design, i.e. non-specific for disease types. Other early 
reviews [28] also use the phrase drug-likeness for “molecules which 
contain functional groups and/or have physical properties 
consistent with the majority of known drugs”. Muegge [19] 
remarked that “Drug-likeness is mostly a statistical descriptor 
derived from databases of other compounds. It should, therefore, be 
used to evaluate the drug-likeness of other compound selections 
such as screening libraries, combinatorial libraries, or virtual 
libraries rather than that of a single compound.” Taking into 
account the general opinion formulated by the above studies the 
drug-likeness paradigm in the present review can be classified as (i) 
general drug-likeness (all diseases and mostly oral drug 
administration); and (ii) specific drug-likeness (classified by 
disease, administration, target, etc.). 
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Table 1. General Drug-Likeness Values of Property Filters 
 

Source Statistics Property Database 

Year Author Ref  NCC HBD HBA logP MW NHA NR NRB PSA Description N 

1997 Lipinski et al. 
(Ro5)  

[12] ∼90P  5 10 5(c) 

4.15(m) 

500     World Drug 
Index (WDI) 

filtered by 
USAN, INN 
names, etc. 

2245 

MEAN    2.3(a) 357     1999 Ghose  [33] 

SD    2.6(a) 174     

CMC 6304 

MEAN    1.73(c) 

1.94(m) 

332     2001 Sakaeda et al.  [34] 

SD    2.21(c) 

2.03(m) 

140     

Oral drugs 222 

MEAN 2.3 1.9 5.7 2.2(s) 340 23.5 2.6 5.6  2003 Feher and Schmidt  [39] 

MED 1 1 5 2.3(s) 312 22 2 5  

Chapman and 
Hall Dictionary 
of Drugs, The 
Merck Index 

10968 

MEAN  2.1 4.9 2.5(c) 337   5.9  

SD  2.4 3.6 2.5(c) 157   4.5  

2003 Wenlock et al.  [40] 

90P  4 8 5.5(c) 473   11  

The Physicians’ 
Desk 

Reference 1999 

594 

MEAN  1.81 5.14 2.27(c) 331  2.56 4.97 21.1% 2004 Leeson and Davis  [42] 

MED  1 4 2.31(c) 310  3 4 18.5% 

Oral drugs pre-
1982 

864 

MEAN  1.77 6.33 2.50(c) 377  2.88 6.42 21.0% 2004 Leeson and Davis  [42] 

MED  1 6 2.36(c) 357  3 6 19.4% 

Oral drugs 1983-
2002 

329 

MEAN  1.8 5.5 2.3(c) 343.7  2.6 5.4 78 2004 Vieth et al.  [43] 

90P  3 9 5.2(c) 475  4 10 134 

FDA Orange 
Book 

1193 

MEAN  3 4.5 2.5(c) 300     2004 Vieth et al.  [43] 

90P  3 8 5.3(c) 427.5     

Lipinski et al. 
recomputed 
based on the 

2001 edition of 
the WDI 

1791 

MEAN  1.5 5.1 2.5 333     2005 Proudfoot  [44] 

90P  3 9 4.8 469     

Oral drugs 1937-
1997 

1791 

MEAN  1.8 5.5 2.3(c) 345     2006 Vieth and 
Sutherland  

[48] 

90P  4 9 5.3(c) 478.4     

Vieth et al. 2004 
updated with 
FDA release 
after 2003 

1210 

MEAN  1.5 3.9 2.74(c) 335.5   5.6 64.7 

SD  1.5 2 2.22(c) 109.2   3.6 39.7 

2009 Tyrchan et al.  [49] 

MED  1 4 2.83(c) 318.5   5 59.1 

GVKBIO, IBEX 976 

Abbreviations. 90P: 90th percentile; HBA: number of H-bond acceptors (O+N); HBD: number of H-bond donors (OH+NH); logP: logarithm of octanol/water partition coefficient 
(small letters in brackets denote different methods of logP calculation); MED: median; MW: molecular weight; N: number of drugs in database; NCC: number of chiral centers; NHA: 
number of heavy atoms; NR: number of rings; NRB: number of rotatable bonds; PSA: polar surface area; SD: standard deviation. 

2.2. General Drug-Likeness  

Ajay et al. [32] investigated the possibility of distinction 
between general drug-likeness and non-drug-likeness by one- or 
two-dimensional descriptors within neural network-based models. 
They used the Comprehensive Medicinal Chemistry (CMC) and the 
MACCS-II Drug Data Report (MDDR) as drug-like data sets and 
the Available Chemicals Directory (ACD) as a surrogate for non-
drugs. It was correctly remarked that using the above databases as 
drug/non-drug collections is an assumption as “the characteristics 
of drug molecules today may change in the future”. Therefore, the 
conclusions of dataset-based drug-likeness studies may always 
reflect the actual state of the common knowledge on drug-likeness 

and a priori include errors. This study can be regarded as a key 
analysis, which included not only drugs, but also quasi non-drugs in 
a truly comparative manner.  

However, most of the studies reporting drug-likeness thresholds 
(Table 1) deal only with drug (lead or bioactive) databases. Ghose 
et al. [33] based their analysis on the CMC database and provided 
drug-likeness thresholds for MW and logP. They also concluded the 
priority of some fragments (e.g. benzene ring) occurring in drug 
structures. The analysis of 222 commercially available oral drugs 
by Sakaeda et al. [34] supported the Ro5. However, the authors also 
remark that compounds with a sugar moiety, high atomic weight, 
and/or large cyclic structure were exceptions to the MW=500 upper 
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threshold. Veber et al. [35] also found that molecular weight cutoff 
at 500 does not itself significantly separate compounds with poor 
oral bioavailability from those with acceptable values. They 
analyzed the oral bioavailability of a large data set in rats 
containing more than 1000 compounds. It was also concluded that 
compounds of possibly good oral bioavailability possess 10 or 
fewer rotatable bonds (NRB) and polar surface area (PSA) equal to 
or less than 140 Å2 or 12 or fewer H-bond donors (HBD) and 
acceptors (HBA). Their analysis on artificial membrane permeation 
rates showed that reduced PSA correlated better with increased 
permeation rate than did ClogP, and an increased NRB had a 
negative effect on the permeation rate. Lu et al. [36] also 
investigated the predictive power of NRB and PSA on 434 
Pharmacia compounds and found that their correlations with 
bioavailability depended on the therapeutic class. 

Hann et al. [37] studied the differences in the properties of drug 
leads and optimized compounds. The data indicates that, on 
average, drug leads have lower MW, lower ClogP, fewer aromatic 
rings (NR), fewer HBA than the corresponding drugs. On the 
contrary, Proudfoot [38] found that most drugs are within 25% of 
the lead values with regard to MW, and nearly all are within one 
calculated MLogP unit.  

In another interesting comparative analysis of drugs, natural 
products and combinatorial libraries Feher and Schmidt [39] also 
emphasized the importance of properties beyond the often used 
MW and logP. For example, it was shown that the ‘number of 
chiral centers’ in a molecule has a great impact on its drug-likeness. 
They found that while chiral centers are normally present in drug 
and natural product molecules, they tend to diminish in 
combinatorial compounds, which is most probably a consequence 
of the oversimplified synthetic/construction steps in the generation 
of combinatorial libraries.  

Wenlock et al. [40] compared distributions of physico-chemical 
properties such as MW and logP of marketed oral drugs and of 
compounds in development. In their analysis, the mean MW of 
orally administered drugs in development decreased on passing 
through each of the different clinical phases and gradually 
converged towards the mean molecular weight of marketed oral 
drugs. In addition, the most lipophilic compounds diminished 
during development. They compared upper property thresholds 
below which 90 % of oral drugs in their data set with the results of 
the Ro5, and good agreement was found (Table 1).  

Besides the thresholds values, the historical trends of, e.g. MW 
of drug candidates, may be also useful as collected by Lipinski [41] 
for the period 1960–2004. It was demonstrated that advanced 
clinical candidates produced by a “rational drug design” approach 
of Merck had a time-dependent higher MW, higher H-bonding 
properties, unchanged logP, and poorer permeability. Early 
candidates from a HTS-based approach of Pfizer (Groton, CT) had 
higher molecular weight, unchanged H-bonding properties, and 
higher logP, i.e. poorer aqueous solubility. In another retrospective 
study, Leeson and Davis [42] showed that mean values of 
lipophilicity, percent of PSA and HBD had not changed in the 
period of 1983-2002. In contrast, mean values of MW and the 
numbers of O + N atoms, HBA, NRB, and number of rings have 
increased by 13-29%. Similarly, Vieth et al. [43] demonstrated that 
the mean property values for oral drugs do not vary substantially 
with respect to launch date. The limited change in the most 
important oral drug-like property values lead the authors to suggest 
that the range of acceptable oral properties is independent of the 
synthetic complexity or targeted receptor. Proudfoot [44] analyzed 
the very long period of 1937-1997. During this period a steady 
increase was observable in mean and median MW. Only seven 
marketed drugs with MW>500 were designed in the 15 year period 
1937–1951, and thirty two in the comparable period 1983–1997. 
Mean and median logP was unchanged in the 60 year period 

examined. Fewer than 5% of oral marketed drugs had more than 4 
H-bond donors and just 2% had MW>500 and >3 H-bond donors. 
An analysis by Leeson and Springthorpe [45] suggested that clogP 
is the most important molecular property, as it is changing less over 
decades in launched oral drugs than other properties. As ClogP 
plays a dominant role in promoting binding to unwanted drug 
targets, a high logP therefore carries increased risks of 
developmental attrition. They conclude that a 5% improvement in 
attrition would double the output of new medicines and that this 
might be achieved simply by lowering logP. Comparing sets of 
drugs and their originating leads, Perola [46] also found that on 
average, the two sets have similar logP, suggesting that the ability 
to maintain low levels of logP while increasing MW is one of the 
keys to a successful drug discovery program. 

Schneider et al. [47] investigated the combined use of drug-
likeness property filters in gradual filtering by decision trees. With 
rapidly computable properties such as MW, XlogP, molar 
refractivity, and several drug-likeness indices, up to 76% of all non-
drugs could be sorted out in the first filtering step. With the aid of 
sophisticated (quantum chemical) properties in the succeeding steps 
up to 92% of the initial non-drugs were filtered out, while less than 
19% of the actual drugs were lost. In addition to the above 
examples, Table 1 also lists threshold values given by Vieth and 
Sutherland [48] and Tyrchan et al. [49]. 

2.3. Limitations of the General Drug-Likeness Concept 

Although physicochemical properties are widely used as 
general drug-likeness filters (Section 2.2), there are several articles 
pointing to their limitations. As Walters et al. [28] envisioned, 
instead of dealing with the complex problem of drug-likeness, a 
viable alternative is the prediction of the various pharmacokinetic 
properties (logP, half-life, plasma protein binding, etc.) that 
contribute to a drug’s success. Remarkably, even the calculation 
and modeling of these properties themselves is rather complex [50] 
and extremely difficult in many cases.  

The lack of validated sets of drugs and decoy sets of non-drugs 
[51] also limits the usefulness of any drug-likeness filters as there 
are compounds, e.g., that can easily fall into either category. 
Moreover, the filters can only recognize those compounds that 
resemble existing drugs as drug-like – compounds from completely 
new classes could be misclassified [31]. Remarkably, the original 
publication of Lipinski [29], root of many others in this field, 
addressed the prediction of only pharmacokinetic properties 
(absorption and permeation) and not general drug-likeness. 

However, collecting sets of good and bad pharmacokinetic 
properties remains a challenge for property filters due to the above-
mentioned complexity of the properties themselves. In addition, the 
final decision on drug-likeness is just further postponed if a filter 
can provide information only on one drug-likeness property. In fact, 
there are several properties to be predicted which can easily give 
controversial results in ranking of a compound or a library and it is 
still unclear which property should be prioritized for the final 
decision, etc. For example, Kubinyi [52] finds that “inappropriate 
ADME (Absorption, Distribution, Metabolism, Excretion) 
characteristics have clearly made far less of a contribution to 
clinical failures than is widely supposed!”. At the same time, he 
also accepts that the application of the Ro5 aimed at prediction of 
“A” of ADME significantly aided improving early combinatorial 
libraries which had included “many large and greasy, biologically 
inactive molecules”. This example of the controversial judgment of 
the fairly well-studied ADME properties illustrates that it would be 
indeed very difficult to set the above-mentioned priority order of 
properties in a decision tree. The questions on the appropriate use 
of a property, i.e., “where and to which extent” seem to remain 
unanswered in general. 
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Similarly, an important study by Feher and Schmidt analyzing 
properties of natural products [39] concluded that: “Drug-like 
filters, such as the Lipinski rules, are very helpful in isolating likely 
problem molecules. However, overly strict adherence to it can have 
the adverse effect of restricting diversity … and hence also 
reducing similarity to natural products. … A large proportion of 
natural products is biologically active and has favorable ADME/T 
properties, despite the fact that they often do not satisfy ‘drug-
likeness’ criteria.” Furthermore, Ganesan [53] analyzed a total of 24 
unique natural products that led to an approved drug in the period 
1970–2006. They found an identical success rate of 50% both for 
the classes conforming or violating the Ro5. It was also found that 
natural products are successful in maintaining favorable logP and 
intermolecular H-bond donating potential even with high MW and 
large numbers of rotatable bonds. 

Lajiness et al [54] raise additional concerns regarding drug-
likeness studies. They claimed that there are very few studies 
accompanied by the data sets used for analysis, and therefore, 
reproducibility of the results is questionable. During collection of 
data in Table 1, we also found that in many cases authors refer to, 
e.g. in-house, company-owned data sets or other resources with no 
or reduced public availability or a non-defined sub-set of an 
available database. However there is no guarantee that proprietary 
collections are adequate for the analysis of general drug-likeness. 
For example, Lajiness et al. [54] mentioned that proprietary 
collections may be biased due to historical lead optimization efforts 
focused at particular chemical classes, such as steroids or 
benzodiazepines. They also concluded that comparing drug-likeness 
of groups instead of individual compounds was appropriate to 
achieve significant results. 

There are also methodological problems with the properties 
‘traditionally’ used as filters. For example, Bhal et al. [55] suggest 
the cautious use of logP in drug design due to its inability to 
account for the ionization of compounds under physiological 
conditions. They conclude that the pH-dependent logD is a more 
realistic descriptor of lipophilicity under physiological pH’s and, 
therefore, logD should be used preferentially over logP as the 
descriptor for lipophilicity, especially when working with ionizable 
compounds. Vistoli et al. [51] also mention the problems of pH-
dependent properties. 

In their seminal paper, Lipinski et al. [29] already claimed that 
antibiotics, antifungals, vitamins, and cardiac glycosides fell 
outside their Ro5, possibly due to transporter effects. The results of 
the study of Good and Hermsmeier [56] suggest further 
discontinuities in drug-like space, beyond those claimed by Lipinski 
et al. [29], in the context of classification. Giménez et al. [57] also 
concluded that Ro5 is very useful to select better compounds in 
chemical libraries, but it must be used carefully to avoid a possible 
exclusion of promising compounds. They evaluated the top 
pharmaceutical products in 2007. Among 60 drugs, 7 (atorvastatin, 
montelukast, docetaxel, telmisartan, tacrolimus, leuprolide and 
olmesartan) did not fit the Ro5, and 5 failed one of the threshold 
values. 

Zhang and Wilkinson [58] summarized their criticism of the 
overemphasis of Ro5 of drug-likeness from two points of view. 
Firstly, they claim that only 51% of all FDA-approved small 
molecule drugs are both used orally and comply with the Ro5. This 
does not even include the increasing number of biologicals of 
which several have reached ‘blockbuster’ status. Secondly, the Ro5 
does not cover natural product and semisynthetic natural product 
drugs, which constitute over one-third of all marketed small-
molecule drugs (see also Feher and Schmidt [39]). 

A further doubt arises from the finding (Dobson and Kell [7]) 
that general drug-likeness properties such as MW or logP, adequate 
for passive diffusion, have decreased ability for prediction of 

carrier-mediated and active uptake of drugs that are more common 
forms of transport than is usually assumed. For drugs transported by 
carriers, general property filters are not normally effective in 
individual cases, and specific data on interactions of drugs and 
transporters would therefore accelerate research in this field. 
Similarly to drugs, naturally occurring intermediary metabolites 
may also require solute carriers to enter cells. Thus, an evaluation 
of metabolite-likeness (Dobson et al.) [59] would be essential to 
understand the true physiological processes. However, estimation of 
metabolite-likeness is missing from most of the present drug-
likeness studies. 

2.4. Specific Drug-Likeness  

Considering the diversity of drug profiles, specific approaches 
of drug-likeness may become an alternative to the limited general 
concept reviewed in the previous Sections. Drugs achieve their 
effects through different mechanisms in the body, targeting 
different proteins, organs or even organisms, as in the case of anti-
infective agents. Moreover, dermatological agents used topically 
may require completely different pharmacokinetic properties than 
drugs which are inhaled, injected or administered orally. In 
addition, drugs that affect the central nervous system have to pass 
yet another obstacle, the blood-brain barrier (BBB). 

Besides their general analysis, (Section 2.2) Ghose et al. [33] 
also investigated the property profile (MW, logP, etc.) of seven 
different classes of drug molecules in the CMC such as central 
nervous system (CNS), cardiovascular, cancer, inflammation, and 
infectious diseases (Table 2). They provided drug-likeness ranges 
for the different classes and found considerable outliers from the 
general drug-likeness trend. For example, the antibacterial 
compounds formed a special class of biologically active compounds 
very different from regular drugs. The logP of anticancer drugs 
showed a high standard deviation possibly due to the complexity of 
cancer, which affects different parts of the body and tissues. On the 
other hand, the standard deviation of logP of CNS drugs was 
relatively small due to the requirement that they should cross the 
BBB. They concluded that for different drug classes the ranges may 
be considerably tighter than the general drug-likeness ranges. 
Leeson and Davis [42] also found that significant differences exist 
between the property distributions of different therapeutic areas of 
oral drugs of the 1983-2002 period. The distributions of MW and 
logP among antiinfectives show different trends from the other drug 
classes probably related to the need for their activity in a non-
human organism, and cell wall penetration in the case of antibiotic 
drugs. 

Vieth et al. [43] analyzed the differences between routes of 
administration (Table 2). It was observed that oral drugs tend to be 
lighter and have fewer H-bond donors, acceptors, and rotatable 
bonds than drugs with other routes of administration. These 
differences are particularly pronounced for oral vs. injectable drugs. 
However, they concluded that due to the substantial overlap in the 
range of properties found between the different drug classes, a 
particular drug cannot be adequately classified as either oral or 
injectable on the basis of simple physical property calculations. 
Tronde et al. [60] have studied the physicochemical properties and 
absorption qualities of inhaled drugs, finding that the pulmonary 
epithelium allows for higher PSA (up to 479 Å2) in compounds, as 
compared to the intestinal mucosa and BBB. They propose the lung 
route as an alternative to drugs poorly absorbed through the oral 
route. Ritchie et al. [61] also studied respiratory drugs administered 
through intranasal/inhaled routes, and found their calculated 
physicochemical properties to have lower lipophilicity, higher 
molecular weight, and higher PSA, when compared to drugs 
administered orally.  
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Table 2. Specific Drug-Likeness Values of Property Filters 
 

Source Disease/administration
/target family 

Statistics Property Database 

Year Author Ref   HBD HBA logP MW NR NRB PSA Description N 

MEAN   1.59(a) 332    cancer 

SD   2.5(a) 129    

349 

MEAN   1.97(a) 361    cardiovascular/ 
antiphypertensive SD   2.1(a) 123    

269 

MEAN   3.05(a) 291    CNS/antidepressant 

SD   1.5(a) 69    

208 

MEAN   4.10(a) 380    CNS/antipsychotic 

SD   1.5(a) 83    

105 

MEAN   2.20(a) 277    CNS/hypnotic 

SD   1.5(a) 99    

74 

MEAN   2.38(a) 339    infection 

SD   2.7(a) 139    

39 

MEAN   3.09(a) 335    

1999 Ghose et al.  [33] 

inflammation 

SD   1.5(a) 122    

CMC 

290 

MEAN 1.00 4.5 3.02(c) 313 2.36 5.00 20.8 % Cancer  

MED 1 4.5 3.01(c) 299 2 3.5 18.3 % 

14 

MEAN 1.46 6.73 3.05(c) 389 2.84 8.23 19.8 % cardiovascular 

MED 1 7 3.00(c) 396 3 8 18.6 % 

79 

MEAN 2.71 6.84 1.90(c) 378 2.32 7.63 26.7 % gastrointestinal and 
 metabolism MED 2 6 2.28(c) 357 2.5 7 20.7 % 

38 

MEAN 2.41 8.78 1.56(c) 456 3.45 6.83 24.6 % infection 

MED 2 7 0.94(c) 389 3 5 21.5 % 

64 

MEAN 1.50 4.32 2.50(c) 310 2.85 4.70 16.3 % nervous system 

MED 1 4 2.55(c) 307 3 4.5 14.3 % 

74 

MEAN 1.37 4.24 3.34(c) 396 3.02 5.52 20.5 % 

2004 Leeson and 
Davis 

[42] 

respiratory and 
 inflammation MED 1 4 2.90(c) 353 3 4.5 19.3 % 

Oral drugs 
1983-2002 

46 

MEAN 3 6.5 1.6(c) 392.3 2.5 7.9 100.5 absorbent 

10-90P 0-7 2-14 -2.3 to 4.8(c) 172-666 0-4 2-16 20-219 

116 

MEAN 4.7 11.3 0.6(c) 558.2 3.2 12.7 143.6 injectable 

10-90P 0-11 3-23 -3.3 to 4.9(c) 196-1085 1-6 2-27 28-311 

308 

MEAN 1.9 5 2.9(c) 368.5 2.9 5.3 75.4 

2004 Vieth et al.  [43] 

topical 

10-90P 0-3 2-8 -0.6 to 6.0(c) 188-495 1-5 1-9 21-114 

FDA Orange 
Book. 

Drugdex 

112 

MEAN 0.7 2.9 3.4 300.5    CYP450 

90 % 2 5 8.8 399.4    

12 

MEAN 1.3 4.2 2.8 326.8    GPCR-bio 

90 % 3 7 5.1 435.4    

216 

MEAN 1.8 5.0 5.5 414.9    GPCR-lipid 

90 % 3 9 8.5 586.2    

8 

MEAN 1.6 8.5 5.0 484.8    GPCR-pep 

90 % 2 12 7.5 600.2    

11 

MEAN 1.3 4.9 2.5 305.5    ion channel 

90 % 2 9 5.0 443.2    

115 

MEAN 2 7.0 4.6 439.4    kinase 

90 % 3 8 5.6 493.6    

5 

MEAN 1.4 3.8 4.1 381.8    NHR 

90 % 3 6 7.2 445.8    

58 

2006 Vieth and 
Sutherland  

[48] 

PDE MEAN 0.9 6.9 1.7 331.9    

Vieth et al. 
2004 updated 

with FDA 
release after 

2003 

15 
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(Table 2). Contd….. 

Source Disease/administration 
/target family 

Statistics Property Database 

Year Author Ref   HBD HBA logP MW NR NRB PSA Description N 

 90 % 2 10 4.2 480.2     

MEAN 4.5 7.2 2.3 430.6    protease 

90 % 5 11 5.9 636.6    

35 

MEAN 1.3 4.2 3.0 304.7    

   

transporter 

90 % 3 7 5.5 423.5    

 

37 

MEAN   2.8 354    

MED   2.9 351    

1999 Ajay et al. [64] CNS 

90 %   0.0-5.2 200-540    

CMC and 
MDDR 

1050 
+ 

16785 

MAX       120 Å2 1999 Kelder et al.  [65] CNS 

∼MEAN       60-70Å2 

Passively 
transported 
oral drugs 

776 

2009 Chico et al. [69] CNS ∼MAX   4 400   80 Å2 Brain-
penetrant 

small 
molecules 

448 

MEAN   2.67(c) 
2.80(m) 

285     CNS 

SD   2.03(c) 
1.98(m) 

91     

44 

MEAN   2.63(c) 
2.66(m) 

279     inflammation 

SD   1.37(c) 
1.47(m) 

107     

17 

MEAN   -0.18(c) 
-0.13(m) 

371     

2001 Sakaeda et al. [34] 

microbial 

SD   1.88(c) 
1.59(m) 

161     

48 

Abbreviations. 90P: 90th percentile; HBA: number of H-bond acceptors (O+N); HBD: number of H-bond donors (OH+NH); logP: logarithm of octanol/water partition coefficient 
(small letters in brackets denote different methods of logP calculation); MED: median; MW: molecular weight; N: number of drugs in database; NHA: number of heavy atoms; NR: 
number of rings; NRB: number of rotatable bonds; PSA: polar surface area; SD: standard deviation. 

Another study of Vieth and Sutherland [48] investigated the 
distribution of drug-likeness property filters by targeted proteomic 
families. For proteases, nuclear hormone receptors, lipid and 
peptide G-protein-coupled receptors (GPCRs), the corresponding 
drugs significantly exceed Ro5 limits, while others targeting 
cytochrome P450s, biogenic amine GPCRs, and transporters had 
significantly lower values for certain properties. It is also an 
interesting question whether ligands targeting different proteomic 
families have statistical difference in their property ranges. 
According to the results of Morphy [62], the ligands of peptide 
GPCRs and integrin receptors, possess significantly higher median 
property values than those for aminergic targets, such as 
monoamine transporters and GPCRs. Agonists for monoamine 
GPCRs, opioid receptors and ion channels had smaller MW and 
clogP than the antagonists, but there was no difference between the 
agonists and the antagonists for peptide GPCRs and nuclear 
receptors. Paolini et al. [63] also found distinct differences in the 
distribution of molecular properties between sets of compounds 
active against different families. For example, they also found that 
the mean MW of ligands binding to aminergic GPCRs is 378(±93), 
whereas the mean MW of peptide GPCR ligands is greater at 
514(±202).  

The design of libraries of CNS-active compounds has been a 
goal of many research groups since the early applications of drug-
likeness property filters (Ajay et al. [64]) such as MW or logP. 
Kelder et al. [65] found a significant difference in the polar surface 

area distribution of 776 CNS and 1590 non-CNS drugs. It was 
concluded that orally active drugs with passive transcellular 
transport should not exceed a PSA of 120 Å2, and a 60-70 Å2 for 
appropriate BBB permeability. MW was identified as a good 
descriptor of BBB penetration [66, 67], and applied in fact as a key 
property filter together with logP in testing a 3042 compound 
screening library [68] for CNS-compatibility. Chico et al. [69] 
claimed that kinase inhibitor drugs for CNS indications required a 
modification of the property limits set by the Ro5. They found that 
most of the brain-penetrating small molecules had a MW<400, 
logP<4 and PSA<80Å2. In addition to above examples Table 2 
provides also threshold values fro three disease families by Sakaeda 
et al. [34]. 

3. MOLECULAR PROPERTY FILTERS DESCRIBING 
BINDING AFFINITY 

Besides the use of molecular properties (MW, NHA, logP, etc.) 
as filters (see previous Sections), several studies investigated the 
correlation between these properties and the binding affinity of a 
ligand to its macromolecular target (Eq. 1). Remarkably, during the 
formation of the [Ligand:Target] complex some water molecules (k 
in Eq. 1) may leave the binding interface, whilst others may join it 
[70, 71]. The binding affinity (also called ‘in vitro potency’) can be 
described in terms of thermodynamic equilibrium constants of 
association, dissociation or inhibition (Ka, Kd. Ki) which can be 
related to ∆G (Eq. 2). In some cases, the logarithm of inhibitor 
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concentration at 50 % inhibition (pIC50) is also applied as a measure 
of binding affinity, but pIC50 cannot be directly related to ∆G by 
Eq. 2. 
Ligand(H2O)n + Target(H2O)m  [Ligand:Target](H2O)n+m-k 
        + k H2O     Eq. 1 
∆G = −RTlnKa = RTlnKd/i        Eq. 2 
(R is the gas constant, T is the thermodynamic temperature) 

In a seminal article Kuntz et al. [72] plotted experimental ∆G 
values of a large set of complexes of macromolecular targets and 
their strongest-binding ligands against the NHA of the ligand 
molecules. They found that ∆G increases with NHA with an initial 
slope of ca. -1.5 kcal/mol (1cal = 4.18 J) per atom. Beyond 15 
NHAs the increase dropped dramatically suggesting a logarithmic 
relationship between ∆G and NHA for large molecules. Reynolds et 
al. [73, 74] found a similar, non-linear relationship when plotting 
the most potent ligands of the BindingDB database. The ‘maximal 
affinities’ as measured by pIC50 increased rapidly up to 20 heavy 
atoms, but a plateau existed beyond 25. A recent study of Ferenczy 
and Keserű [75] also presented a non-linear plot of pKd-NHA with 
a plateau starting from 40 heavy atoms. 

Ferrara et al. [76] calculated the Pearson R value between the 
experimental ∆G and the logarithm of the MW for different data 
sets (Table 3) and found significant correlations in many cases. The 
logarithmic function was chosen according to the above detailed 
logarithmic dependence of ∆G on NHA shown by the study of 
Kuntz et al. [72]. Velec et al. [77] also calculated a Spearman’s 
rank order correlation coefficient of 0.56 between experimental 
∆Gs of 100 complexes and the MWs of participant ligands. Affinity 

predictions purely based on the ligand’s MW gave in fact better 
results for the 100 complexes than many scoring functions 
involving other terms on, e.g. interaction with the target. Wells and 
McClendon [78] collected the ∆G of highest-affinity fragments and 
small molecules that target seven different protein–protein 
interfaces, and found an R=0.77 (R2=0.59) correlation between ∆G 
and NHA. Kim and Skolnick [79] published correlations between 
pK and logMW values of various data sets (Table 3). 

Olsson et al. [80] measured a considerable correlation of ∆G 
with apolar surface area burial (including both ligand and protein 
surface) upon complex formation (R2=0.65) and the change in 
ligand apolar solvent accessible surface area (ASA, R2=0.44) using 
a diverse set of 254 complexes of the SCORPIO database. Notably, 
binding pocket ASA was shown [81] to correlate with ligand MW 
at an R2=0.77 too. For peptide ligands, estimation of ∆H was 
considered using a linear combination of ∆ASA values [82]. 

The background of the correlations of ∆G (logK) with ligand-
based, size-dependent properties (MW and NHA, Table 3) has not 
been elucidated yet. According to Eq. 3, for the analysis of 
correlation of the properties with ∆G it may be a plausible idea to 
analyze their correlations with the binding enthalpy (∆H) and 
entropy (∆S) changes, respectively. Using the data set published by 
Reynolds and Holloway [83], no correlation can be observed 
between NHA and ∆H or T∆S, respectively, but with ∆G, a slight 
R2=0.28 can be calculated. This finding hints that such a dissection 
of ∆G into ∆H and T∆S may not help in finding the reasons of the 
correlations of Table 3. 
∆G = ∆H − T∆S         Eq. 3 

Table 3. Correlations Between Binding Affinity and Molecular Properties 
 

Source Correlated quantities R2 Database 

Year Author Ref Binding affinity Property  Description-target protein N 

0.36 LPDB-all 189 

0.23 LPDB-oxidoreductase 37 

0.81 LPDB-serine protease 25 

0.58 LPDB-metalloprotease 13 

0.50 LPDB-immunoglobulin 10 

0.18 LPDB-lyase 8 

2004 Ferrara et al.  [76] pKi 
 

logMW 

0.16 LPDB-L-arabinose binding protein 9 

2005 Velec et al. [77] pKd MW 0.31a Wang et al. 100 

2007 Wells and McClendon [78] ∆G NHA 0.59 Ligands of seven different targets 13 

0.38 CDSa(CDS1-7) 146 

0.24 CDS3-HIV-1 protease 28 

0.53 CDS5-Ribonuclease a 13 

0.76 CDS6-Thermolysin 10 

0.50 CDS7-Beta trypsin 47 

0.59 Protein Ligand Database v1.3 
CDS8-Beta trypsin 

7 

0.88 CDS9-Carbonic anhydrase II 15 

0.40 CDS11-HIV-1 protease 6 

2008 Kim and Skolnick [79] pKi/pKd logMW 

0.49 CDS12-Thrombolysin 9 

2011 Reynolds and Holloway [83] ∆G NHA 0.28b BindingDB 102 

logMW 0.14 

logW 0.15 

2012 Present study  ∆G 

logP 0.19 

Non-drugs 320 

Abbreviations. logP: logarithm of octanol/water partition coefficient; MW: molecular weight; N: number of data; NHA: number of heavy atoms; W: Wiener index. 
a)Spearman’s R2; b)Calculated using the data in the reference. 
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∆G ≈ ∆Hinter + ∆Hintra − T∆Sconfig + ∆Gsol      Eq. 4 
∆Hinter ≈ ∆ECoulomb + ∆ELJ + …       Eq. 5 

∆G can be approximated (Brooijmans and Kuntz) [84] further 
by separating the terms of Eq. 3 into enthalpy changes (Eq. 4) 
coming from changes of intra (∆Hintra)- and intermolecular (∆Hinter) 
interactions, configurational entropy change (∆Sconf), and a free 
energy change coupled to (de)solvation processes (∆Gsol), such as 
release of interface waters (Eq. 1) during binding. ∆Gs includes 
both enthalpic and entropic contributions of changes of solute-
solvent interactions during complex formation. (Notably, there is an 
unclosed debate in the literature on the separability of the entropic 
terms for individual (molecular) contributions which may affect the 
above separation of ∆Gs from other terms of ∆G [85, 86]. In many 
∆G calculators [84], ∆Hinter is estimated involving pair-additive 
potential terms such as the Coulomb (ECoulomb) or the Lennard-Jones 
(ELJ) formulas (Eq. 5) for electrostatic and van der Waals-
interactions, respectively. Jacobson and Karlén [87] found that ∆G 
calculators built mostly on such enthalpic terms of ligand-target 
interactions (Eq. 5) produced high correlations with NHA hinting 
that ∆Hinter accounting for protein-ligand interactions is partly 
described by NHA. One possible explanation is that NHA can be 
related to surface area, and hence, to van der Waals interactions 
and, therefore, a high NHA can translate into a high ∆Hinter. 

Besides ∆Hinter, some parts of the configurational entropy 
(Sconfig) can be also related to MW (Eq. 6) 
Sconfig = Strans + Srot + Svib         Eq. 6 
Strans + Srot = Rln(aMW)        Eq. 7 
where trans, rot, and vib denote respectively, the translational, 
rotational, and vibrational ∆S contributions to the configurational 
entropy change, and ‘a’ is a constant. Several studies [88-94] 
calculate Sconfig using classical formulas relating Strans and Srot to the 
logarithms of MW and the principal moments of inertia, 
respectively. As known, the principal moments of inertia are also 
dependent on molecular size (and shape). Simplified formulas [95, 
96] were also introduced (Eq. 7) showing the dependence of part of 
Sconfig on MW. However, this dependence was suggested to be very 
weak or zero for the change of Sconfig, i.e. for ∆Sconfig of the binding 
process [97, 98]. 

In summary, several studies have published relationships (Table 
3) at various correlation levels between experimental binding 
affinity and molecular property filters such as MW, NHA, etc. 
Since the article of Gilson et al. [97], which had also dealt with the 
∆G-MW correlation, experimental collections have been published 
presenting new data. A collection of recent correlations was 
provided in Table 3 and the thermodynamic background was 
sketched to illustrate the problems of explaining these correlations. 
While the above considerations suggest that individual components 
of ∆G such as ∆Hinter are related to molecular size, and some of 
them, such as ∆Sconf, are probably not correlated with MW, the final 
explanation on the moderate, but significant correlations of ∆G with 
ligand size is still awaiting. Notably, these relationships are 
probably not linear as quantities obtained by simple normalization 
of ∆G with, e.g. MW, are still dependent on MW (see next Section 
for details). 

4. THE CONCEPT OF LIGAND EFFICIENCY (EFFICI-
ENCY INDEX, EI) 

The dependence of binding affinity on ligand size (MW, NHA) 
discussed in the previous section raises the question whether it is 
possible to define a measure, the binding efficiency for comparison 
of ‘intrinsic’ binding affinities of ligands of any sizes via 
‘decoupling’ ∆G from molecular size. In an early work, Andrews et 
al. [99] hinted at the possibility of definition of such intrinsic ∆Gs 
for a limited number of functional groups of a molecule by using 

average values calculated from experimental ∆Gs. Later, DeWitte 
and Shaknovich [100] calculated the intrinsic binding affinity per 
heavy atom and correlated these values with experimental Ki-s. 
Kuntz et al. [72] also used this intrinsic measure and showed that 
∆G/NHA rapidly decreases up to ca. 15 NHA (see also previous 
Section). 

Based on the above results, Hopkins et al. [101] recommended 
the introduction of ligand efficiency in the following explicit form 
(Eq. 8). The work of Wells and McClendon [78] provides 
information on the actual values of ‘efficient’ molecules. They 
collected several potent small molecules inhibiting protein–protein 
interactions and obtained |EINHA| values of 0.2…0.4 for their data 
set. An alternative, idealized value of 0.5 has been recommended by 
others [63, 101, 102]. 

 

EI
NHA

=
!G

NHA

          Eq. 8 

To note, throughout this review we use the name ‘efficiency 
index (EI)’ instead of ‘ligand efficiency’ to emphasize that this 
measure of intrinsic ∆G is a rational definition of the efficiency of a 
ligand, however, it is not the only possible definition.  

Definition of other EIs was provided by Abad-Zapatero and 
Metz [24] using MW (EIMW) and PSA (EIPSA) in the denominator of 
Eq. 8 instead of NHA. A series of other EIs were introduced based 
on various size-dependent properties for normalization among 
which the Wiener-index (W) was found particularly useful in the 
form of EIW [103]. Leeson and Springthorpe [45] proposed a 
ligand-lipophilicity-based efficiency index (EIlipo, Eq. 9) to be used 
in “maximizing the minimally acceptable lipophilicity” per unit of 
binding affinity during drug design. They suggest that an average 
drug has an EIlipo of 5-7 or greater.  
EIlipo = pIC50 (or pKi) – clogP (or logD)       Eq. 9 

Although the definition of EIs involves normalization by ligand 
size (Eq. 8), Reynolds et al. [74] found that EINHA is still dependent 
on ligand size, as a very dramatic decline was observed in EINHA as 
size increases. Notably, Orita et al. [104], and Keserü and Makara 
[105] described a similar trend of EINHA vs. NHA. The drop in 
EINHA was large between ca. NHA=10…20, and flattened toward 
very large sizes (NHA>40). They found an interesting similarity 
between the maximal EINHA vs. NHA and the ASA vs. NHA curves 
suggesting that the primary driving forces behind the systematic 
decline in maximal EINHA with increasing molecular size is the 
reduced effective surface area for the larger compounds. In other 
words, large molecules possess relatively large buried surface area 
unavailable for binding. In a recent study, Reynolds and Holloway 
[83] concluded that the strong size dependence of EINHA (average or 
optimal) is mostly a consequence of the dependence of the 
enthalpic, and not the entropic part of EI. To eliminate the above 
size-dependency of EINHA, Reynolds et al. [74] introduced a new 
functional form called ‘fit quality’, and Nissink [106] derived a 
size-independent ligand efficiency measure of the form of binding 
affinity/NHA0.3. 

The concept of ligand efficiency is a simple way to merge 
binding and pharmacokinetic characteristics of a ligand into a single 
measure. EI has already been applied in many studies and it is 
suggested to become a useful tool of fragment-based drug discovery 
[102, 104, 107-109], lead optimization [46], and drug chemical 
(molecular) space localization for some diseases or organs [110] 

5. SENSITIVITY AND SELECTIVITY OF PROPERTY 
FILTERS 

Tables 1 and 2 list general or specific drug-likeness values of 
molecular properties. Most of these values are descriptive statistics 
(mean, median, percentile, etc.) of data sets including only drugs. 
That is, counter-examples of a set of non-drugs are generally not 
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considered. Notably, the strict definition of such sets is not obvious 
(Section 2.2) due to possible change/evolution of the drug/non-drug 
status of any compounds. However, if sets of drugs were collected, 
then it is fairly plausible to expect a non-drug set for comparison. 
Introduction of a new statistical term on the selectivity of the 
property filter is also necessary showing the ability of the property 
to distinguish drugs from non-drugs. Since the investigated 
molecular properties (MW, NHA) are coupled to both 
pharmacokinetic drug-likeness (Section 2) and ∆G (Section 3), it 
would be also advantageous to ‘switch off’ the ∆G-coupling in an 
analysis to investigate the properties’ selectivity only for drug-
likeness. In the forthcoming Sections, selectivity and sensitivity 
measures of drug-likeness filters are introduced using a 631-
compound database as an example.  

5.1. Data Sets 

Details of the collection of the data sets are provided in the 
Appendix and the sets are listed in the Supplementary Material. To 
decouple the ∆G-dependence (Section 3) of the property filters, the 
two sets (320 non-drugs and 311 drugs) were designed to have the 
same range of maximal experimental ΔG. To evaluate data sets and 
assess the similarity/dissimilarity of the distributions, a standard 
protocol of statistical analysis was followed (Appendix). The 
distribution of the data was checked, and it was found that the ΔG 
values in the sets and also in the entire database followed non-
normal distributions (p<0.001). To check the distribution of an even 
larger sample of available experimental ΔG data, the same tests 
were performed for a set of more than 4,000 binding affinity values 
from the BindingDB [111] database and it showed a non-normal 
distribution as well. As the normality tests failed for the ΔG data 
sets, two non-parametric tests were applied and showed equal 
medians and distributions of ∆G between the drug and non-drug 
populations (p>0.1, p>0.05). In addition to the statistical tests, a 
high degree of overlap between the distributions of the two ΔG 
populations can be seen from the plot of their histograms (Fig. 1a), 
and from the fitted mixed normal probability density functions 
(PDF, Fig. 1b). The comparison of descriptive statistics also 
emphasizes the equality of drug and non-drug ΔG populations. The 
medians of the samples are in good agreement (Δ ≈ 0.5 kcal/mol) 
and the median difference between percentiles of the two samples 
(Appendix) is a marginal 3 % (Fig. 1c). Details of the statistics are 
included as Supplementary Material. 

In conclusion, a database of drug and non-drug compounds was 
collected wherein the two sets have ΔG distributions of 
significantly high similarity. Importantly, such criterion was not 
applied for the distribution of molecular properties and EIs of the 

two sets. Thus, it could be tested if the properties can describe 
general drug-likeness ‘decoupling’ effects common with ΔG. The 
outcome of this test is summarized in the next Section. 

5.2. General Drug-Likeness Filters 

Similarly to the previous section, the results of normality tests 
indicate that most of the investigated drug-likeness property filters 
(MW, NHA, W, logP) and the corresponding EIs (Section 4 and 
Appendix, EIMW, EINHA, EIW) are not normally distributed 
(p<0.001). In contrast with the previous section, the non-parametric 
tests of equivalence resulted in a highly significant difference 
(p<0.001) between the property/EI distribution of the drug and non-
drug sets. There is a considerable increase in the medians of MW, 
NHA, and W with Δ≈150, 10, and 2000 units respectively, for non-
drugs compared with drugs. Similarly, the corresponding median 
percentile differences are in the range of 15-230%, which is 
significantly larger than that of ΔG (Fig. 1c). The histograms and 
Probability Density Functions (PDF’s) (Fig. 2a, b, e, & 
Supplementary Material) show a change in the shape of the 
distributions. Whereas the ΔG distributions (Fig. 1a, b) are rather 
rounded, well-defined peaks appear in the case of MW, NHA and 
logW, reflected also by a change in the kurtosis value from negative 
to positive. For drugs, a sharp peak and a high kurtosis value 
appear, while the non-drug histogram is flat with a long tail. 

A similar separation of the two sets can be observed using EIs 
(Fig. 2c, d & Supplementary Material). The EIMW histograms (Fig. 
2c) do not resemble the non-separable ΔG distributions of drugs 
and non-drugs (Fig. 1a). The partial separation of EI values seems 
to be a plausible consequence of the differentiating power of the 
parent MW. By definition, in EIs the populations of ΔG and MW or 
NHA are connected and the distributions of EIMW and EINHA reflect 
the shape of the one-peaked MW (Fig. 2a) or NHA distributions, 
which are more suitable candidates for statistical evaluations than 
the flat ΔG distributions with dual maxima (Fig. 1a, b). 

Whereas significant separation power of the filters can be 
concluded from the above analysis, a considerable overlap of the 
drug and non-drug histograms can also be observed especially in 
the cases of W and EIw where the distributions have an exponential 
shape (Supplementary Material). Notably, taking the logarithm of 
W (logW) resulted in separate peaks (Fig. 2e). For logP, (Fig. 2f) 
the drug population is centered in a well-defined peak in the 
hydrophobic region (logP>0), as can be expected for drugs [12, 42], 
whereas the distribution of non-drugs is similar to the case of ΔG. 
The considerable overlap of drug and non-drug populations in the 
hydrophobic region, along with a separate non-drug sub-population 

 
 
 
 
 
 
 
 
 
 
 
Fig. (1). Comparison of binding affinity distributions of sets of drugs and non-drugs. The two compound sets with N=311 and 320 members respectively, were 
designed to be non-separable by ΔG. Overlapping histograms of ΔG values in part (a) and two-component normal mixture probability density functions fitted 
to the histograms in part (b) reflect the similarity of the two datasets. In part (c), the median differences between the series of percentiles of the two sets are 
shown. Whereas the difference is marginal in the case of ΔG, it is significant for the filters. Error bars represent median absolute deviations. 
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in the hydrophilic region (logP<0) explains the high spread of 
median differences at logP (Fig. 1c). 

5.3. Definition of Selectivity and Sensitivity of Drug-Likeness 
Filters 

As it was shown in the previous section, sharp borders cannot 
be drawn between the partly overlapping drug and non-drug 
populations for the properties investigated. To achieve a coherent 
formulation of selectivity and sensitivity, fits of Probability Density 
Functions (PDF) of continuous distributions (Weibull, Gumbel, 
Exponential) were performed for histograms of the properties (Figs. 
2b, d). Using these explicit forms of PDFs, an analytical 
comparison of the distributions of drugs and non-drugs has become 
possible for the EI’s and MW (Fig. 3 and Appendix). In the 
following discussion we will use the example of EIMW for the 
introduction of PDF-based sensitivity and selectivity of the filters. 

The probability that a drug adopts an EIMW larger than a 
minimum threshold (TMIN) is expressed as a percentage (Eqs. A4 
and A6) and named sensitivity (σ) as it reveals whether a large 
enough section of the entire drug population is included in the 
region under question. A σ=51% is represented by an shaded area 
in Fig. (2d). In this case, 51% of the total drug population is located 
in the region above TMIN. The larger the sensitivity of a filter, the 
fewer drugs are excluded erroneously above a minimum threshold 
TMIN. Detailed definitions of probabilities are shown in the 
Appendix. Decidedly, σ is a necessary, but not a sufficient 
parameter of a property filter.  

Further inspection of the fitted PDFs of EIMW (Fig. 2d) reveals 
that in the region starting from TMIN, the probability that a drug 
adopts an EIMW is three times higher than this probability for non-
drugs. Thus, the ratio of the shaded area below the PDF curve of 
drugs and the striped area (Fig. 2d) corresponding to non-drugs is 

three. Generalizing the previous observations, we introduce another 
measure of selectivity (Eqs. A5 and A7), the Drug-likeness Ratio 
(DR), relating the population of drugs with that of non-drugs by the 
ratio of their probabilities. In terms of the above-mentioned 
example, DR equals 3 as there is a three-fold higher chance for a 
compound to be a drug than a non-drug above TMIN.  

After fitting the PDFs, thresholds can be fine-tuned for a drug-
likeness filter using the DR and σ functions as calibration curves 
(Fig. 4a), i.e. the TMIN value can be read from the curve plot at a 
required level of DR or σ. According to the relative position of DR 
and σ functions, drug-likeness filters can be categorized into three 
types (see also Appendix for details): those with limits of TMIN (Fig. 
4a), both TMIN and a maximum threshold (TMAX, Fig. 4b), or only 
TMAX (Fig. 4c). EIMW can be categorized under the first type (Fig. 
4a). In the above-mentioned example (Fig. 2d), a TMIN of 2.8 
kcal/mol is a realistic lower EIMW threshold at levels of DR=3, and 
σ=51%. As σ decreases with increasing DR (Fig. 4a), thresholds 
with DR>10 may have no practical importance. 

In Table 4, general thresholds calculated for all filters at DRs 
from 2 to 3, and σ>50% are listed. Compared with values from the 
literature (Table 1), it can be concluded that the calibrated range of 
129-369 for MW (Fig. 4b) correspond to drugs. Calibrated 
thresholds of NHA, EIMW and EINHA at similar DR and σ values are 
also located at the drug/lead border (Table 1). For logP there are 
various data published and our estimated range of 0.7-4.3 between 
TMIN and TMAX agrees well with the values from the literature 
(Table 1). The above results allow experimenting with calibration, 
and fine-tuning of thresholds at different DR and σ levels 
depending on the nature of desired applications, i.e. if hits, leads or 
drugs are investigated requiring small/large selectivity and 
sensitivity criteria, etc. Example thresholds at various DR and σ 
levels and details of the calculations can be found in the 
Supplementary Material. Importantly, while the above description 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (2). Separation of sets of drugs and non-drugs by drug-likeness filters. Histograms in parts (a), (c), (e), (f), and fitted probability density functions in parts 
(b) and (d) reflect separation of the two compound sets by various filters. Part (d) also features key terms of this study with an example of EIMW. The shaded 
area below the drugs group curve represents the sensitivity (σ) of EIMW above the threshold TMIN=2.8 kcal/mol. The ratio of this shaded area and the striped 
area below the non-drug curve shows that drugs can be found with three fold higher probability than non-drugs above TMIN and by definition this equals the 
drug-likeness ratio (DR=3). 
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Fig. (3). An example of the use of fitted probability density function (PDF, f) and the corresponding cumulated density function (CDF, F) for 
the analytical calculation of selectivity and sensitivity measures DR and σ of MW. As F(MW)≈0 for small MWs, T

MIN
 was omitted from 

function DR. Gumbel distributions were fitted for both drugs (D) and non-drugs (ND) sets (see also Fig. 1). Notably, the general functional 
formulae are provided in this figure and different scale (α) and location (µ) parameters were obtained for the two sets (see Supplementary 
Material for numerical values of the parameters and details of fit). The σ can be directly calculated (Eq. A6) from the CDFs according to 
σ=100[FD(TMAX)-FD(TMIN)]. Since the DR function has a maximum on the MW≤1500 domain investigated, TMIN and TMAX thresholds can be 
calculated (Fig. 4) for DR values up to ca. DR=3.75. Plausibly, a DR≥ 1 is of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (4). Calibration curves of drug-likeness thresholds. The shape and relative location of sensitivity (σ) and Drug-likeness Ratio (DR) functions facilitate 
calibration of the three types of drug-likeness thresholds (T) of filters. (a) In the case of EIMW, the DR function increases and σ decreases on the domain 
investigated. Thus, a minimum threshold (TMIN=2.8 kcal/mol) can be calibrated (following the previous example of Fig. 2d) with a DR=3, which is large 
enough that EIMW can separate drugs from non-drugs. At the same time, the sensitivity of EIMW is also acceptable (σ=51 %) for recognition of drugs above this 
threshold. (b) In case of MW, the DR function has a maximum, and therefore there are two thresholds (TMIN and TMAX) with the same DR value specifying a 
favorable MW interval with sufficiently high DR values. Here, σ=100[FD(TMAX)-FD(TMIN)], where FD is the cumulative distribution function of drugs. At higher 
DR values, i.e. narrower (TMIN, TMAX) intervals σ becomes smaller. (c) For a decreasing DR, the maximum of logW can be set (TMAX), below which the 
separation of drugs from non-drugs is possible by logW. To note, the logW-related curves are not continuous functions, the points are derived from raw 
histogram data. 

of filters with DR and σ were used for drug/non-drug (drug-
likeness) separations, our present approach can easily be easily 
adopted to describe the filters in drug/lead or lead/hit relations 
(lead-likeness). 

5.4. Disease-Specific Drug-Likeness 

It is informative to characterize the discriminating power of the 
filters between drugs and non-drugs beyond general terms 
according to disease categories (Section 2.4). For this 
characterization, the set of drugs was divided into sub-sets by 
disease categories according to the classification of DrugBank 
[112]. Similarly to the case of general drug-likeness (Section 5.2), a 
non-drug companion with the closest ΔG was selected for each drug 

in each disease category. This method resulted in selected disease 
category sub-sets of non-drugs that are inseparable from the 
corresponding drugs by ΔG (Fig. 5). In all cases, statistical 
comparisons of sub-sets of drugs and non-drugs were performed for 
ΔG and for all 8 filters. The overall results on separation of inter-
quartile ranges are shown as a matrix (Fig. 5), other details can be 
found in the Supplementary Material. (Notably, due to the relatively 
small number of drug/non-drug members of the sub-sets σ and DR 
were not calculated in this analysis by disease types. In forthcoming 
studies we plan to extend the selectivity and sensitivity calculation 
of the filters on large disease-specific data sets.) 

In 70% of the cases, separation of the sub-sets at different levels 
can be observed (Fig. 5), and in the remaining cases, the inter-
quartile ranges of drugs and non-drugs are completely overlapping. 
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There is a minority (10%) of cases in which a high separation 
(>90%) was found. The “worst performance” occurred in the 
categories of Antineoplastic agents and Anti-infectives, with cancer 
drugs presented in the former category. This finding implies that the 
failure of new drug discovery in these areas [113, 114] may be 
partly due to the inefficacy of drug-likeness filters investigated in 
this study. There are also numerous cases where only a partial 
separation was achieved as, e.g. the cardiovascular system 
compounds at MW (Fig. 5b).  

Based on these observations, drug-likeness thresholds (Table 4) 
were estimated for disease groups using the inter-quartile ranges of 
properties that provide the highest level of separation (>90%), 
which show agreement with Table 2. These disease-specific 
thresholds provide in some cases (MW, logP) narrower drug-
likeness ranges than the general thresholds found within reference 
values available in the literature.  

Whereas the evaluation of the above mentioned negative or 
partly successful cases is not an easy task, certain positive results 
can be readily explained. For example, logP, well-known to 

describe skin permeability [115-117], performed well for the 
category of dermatological drugs which require absorption through 
the skin (Fig. 5c). Similarly, MW, a good filter of nervous system 
drugs in this study (Fig. 5d), describes blood-brain barrier 
penetration [66, 67], an important issue of drug design for CNS 
diseases. The MW-threshold calculated for nervous system diseases 
(Table 4) is in good agreement with the MW<400 value 
recommended by other studies [34, 69]. 

Interestingly, the performance of EIs does not always 
correspond to their parent ligand-based properties (MW, NHA, W), 
emphasizing their different information contents. Besides the well-
known drug-likeness filters such as MW and logP, the recently 
introduced EIW

 [103] was one of the best separators according to 
the present analysis, emphasizing the benefits of using EIs.  

6. SUMMARY AND FUTURE OUTLOOK 

Molecular properties of drug candidates have been extensively 
used as drug-likeness filters of compound libraries. In the present 

Table 4. Calibrated Thresholds, Selectivity, and Sensitivity of Property Filters 
 

General thresholds Disease-specific thresholds 
Property filter 

TMIN
 TMAX

 DR σ  TMIN-TMAX
c 

MW 129 369 2.5 61 206-322d, 262-342e, 258-342f 

NHAa 9 27 2.0 67  

Wa - 2037 2.0 73 578-1180f 

logWa - 3.1 2.1 58 2.76-3.07f 

logPa 0.7 4.3 2.6 67 1.02-3.27g, 1.74-3.59d 

EIMW
b 2.8 - 3.0 51  

EINHA
b  4.2 - 3.0 52  

EIW
b  7.5 - 3.0 56 6.51-15.87e, 6.01-17.78h, 7.35-21.93f 

Abbreviations. DR: drug-likeness ratio (selectivity); EI: efficiency index; logP: logarithm of octanol/water partition coefficient (small letters in brackets denote different logP 
definitions); MW: molecular weight; NHA: number of heavy atoms; σ: sensitivity; T: threshold; W: Wiener-index. 
a)Calibrated values of this filter were estimated from histograms and not from fitted distributions. b)The dimension of EIs is –kcal/mol. c)TMIN-TMAX is a (modified) inter-quartile range 
of the drugs set (no DR and σ values are given). d)Musculo-skeletal system. e)Nervous system. f)Various. g)Dermatologicals. h)Respiratory system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. (5). Disease-specificity of drug-likeness filters. The set of drugs (N=311) used in this study was split into sub-sets according to various disease categories. 
The number (N) of members of these sub-sets is marked in brackets on the left side of the shaded matrix (a). Sub-sets of non-drug compounds possessing the 
same ΔG distribution as the sub-sets of drugs were formed. Each cell of the shaded matrix shows the level of separation of the inter-quartile range of a sub-set 
of drugs from that of non-drugs according to ΔG or a filter. The separation is 0 % if the two ranges are completely overlapping. This is the situation for all 
disease categories in the ΔG column due to the aforementioned selection of sub-sets of non-drugs. The separation is between 0 and 100 % if there is a partial 
overlap between the ranges as shown in the box plot for cardiovascular system drugs according to MW (b). If there is no overlap in the ranges, then the 
separation is 100 %. The latter situation is featured in examples of box plots of dermatologicals according to logP (c), and nervous system drugs according to 
MW (d). 
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review, a distinction was made between general and specific drug-
likeness. While the investigated properties significantly 
differentiated between the sets of oral drugs and non-drugs in 
general, a considerable overlap remained between the two sets. 
Certain disease types or drug administration routes may require 
specific filter values instead of the broader, general ones. It was 
also discussed to which extent the molecular properties are coupled 
to ∆G. Statistical comparison of drug sets with non-drugs of similar 
binding affinity and use of selectivity and sensitivity measures were 
introduced as an improved description of the overlapping 
distributions of filter values. With the new measures filtering 
thresholds gain statistical meaning: namely, their selectivity against 
non-drugs (DR) and sensitivity for drugs (σ). In addition to the 
positive results of the general drug-likeness concept, relevant 
criticism and limits of its applicability were also surveyed.  

Filtering thresholds can help in the future design of 
standardized, compound libraries assembled for binding assays, 
HTS, or other in vivo tests. However, precise statistical calibration 
of filtering thresholds − as shown in this work − may be required 
beyond simple descriptive statistics (mean, median) to assess full 
reliability of the thresholds. Disease-, target-, or administration-
specific drug-likeness filters may help the design of focused 
libraries which may become a competitive alternative to general 
compound sets. Molecular property and EI-based filters have an 
increasing impact also in fragment-based design [101, 118], and in 
the chemical optimization of physico-chemical properties of natural 
products [113, 119] or other lead compounds. 
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APPENDIX 

Collection and Verification of Compound Sets of Drugs and 
Non-Drugs 

The structure of 311 drugs and 320 non-drugs and their 
experimental binding affinities (mostly as inhibition equilibrium 
constants, Ki) were collected from the following sources: PDBbind 
v2005 [120], KiBank [121, 122], SCORPIO [123], and from a 
previous study [124]. The BindingDB [110] database was also used 
for normality test comparisons. Where it was necessary, ΔG 
(precisely the standard Gibbs free energy change, ∆Go − the 
standard sign is omitted in this study for simplicity) values were 
obtained from Ki by ΔG = RTlnKi, using T=25 oC (298.15 K). The 
complete sets of drugs and non-drugs, as well as their raw and 
converted ΔG values are available as Appendices of the 
Supplementary Material. Similarly to other studies [72, 81], 
maximal ΔG values, i.e. ligand binding affinities corresponding to 
the complex with the relevant, strongest binding protein partner 
were collected. In the case of drugs, ΔG values with the 
pharmacologically relevant targets were considered. Whereas ΔG 
correspond to a multi-molecular interaction between the ligand 
compound, target, and solvent shell, it has been shown that ΔG is 

also related to molecular properties (MW, NHA, logP) [72, 78, 81] 
of the ligand only, as these properties hold information on both 
enthalpic (ΔH) and entropic (ΔS) constituents [103] of ΔG (through 
ΔG = ΔH - TΔS). Consequently, there is a ligand-based part of ΔG 
explained by the above properties (see also Section 3), which is 
constant regardless of the actual target. Since a compound can bind 
as a ligand to various targets, it can adopt different ΔG values due 
to target-specific interactions (ΔH) and, therefore, the maximal 
experimental ΔG, i.e. the maximum ΔG value of a compound with 
its relevant target(s), were collected for both sets in the present 
study. Using these maximum ΔG values helps decreasing target-
specificity of the interaction (ΔH) part as they correspond to the 
ideal binding affinity of a compound. 

The selection procedures of the two sets are following. (i) The 
list of all small-molecule approved drugs was downloaded from the 
DrugBank database, which also contain disease-specific data on 
drugs approved by the FDA (U.S. Food and Drug Administration 
agency). A standard, programmed procedure was applied to ensure 
purity the two sets. (ii) The ligand names were extracted from the 
PDB files, and queried in the DrugBank [112] database to identify 
those ligands that are FDA-approved drugs, and to avoid 
contamination of drug molecules in the non-drug collection. (iii) 
The set of non-drugs was designed to have overlapping binding 
affinity distribution with the set of drugs (Figs 1a, b). While non-
drugs were selected with a similar ΔG as drugs, but such criterion 
was not applied for the filtering properties of the compounds. Thus, 
there were no circumstances in the sampling which affected the 
composition of non-drugs set so as to determine/guarantee its 
similar/different property (MW, NHA, etc.) distribution compared 
with the drugs set (Fig. 1c).  

Filters 

There are various properties applied in drug design as size, 
structural, or property filters. Whereas size filters such as molecular 
weight (MW) or number of heavy atoms (NHA) require solely the 
knowledge of a compound’s atomic composition, structural 
descriptors also involve intra-molecular connectivity. The Wiener 
index (W) is a typical structural descriptor reflecting the branching 
and complexity of the molecule. The W is a robust measure as it 
does not depend on the molecular conformation. To be able to 
calculate the W of a compound, knowledge of its Lewis-structure is 
sufficient (Eq. A1). In this study, its logarithm (logW) is also used. 

!=

NHA

ji,
ijd

2
1W       Eq. A1 

where dij is the number of bonds in the shortest path connecting the 
pair of atoms i and j in the molecule. There are also other property 
filters, e.g. the logarithm of octanol/water partition coefficient 
(logP) which is generally applied as a measure of hydrophobicity 
for a non-ionized compound. The binding affinity and the 
aforementioned size or structural properties have been combined 
into hybrid filters called the efficiency indices (EI). The EIs are 
ΔGs normalized by these filters (Eq. A2). Exponents of ten were 
used as multipliers in the formulae to obtain human-readable EI 
values. 
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      Eq. A2 

The program XLOGP v2.060 [125] was used to calculate the 
logarithm of octanol/water partition coefficient (logP) by an atom-
additive method including correction factors. The calculations of 
molecular formula and number of heavy atoms (NHA), molecular 



Molecular Property Filters Current Medicinal Chemistry,  2012 Vol. 19, No. 11      1659 

weight (MW), and Wiener index were performed with Marvin 
Beans v4.1.861 [126]. The experimental ΔG’s, calculated 
physicochemical properties and EI’s are available as an Appendix 
in the Supplementary Material.  

Descriptive Statistics 

To check the similarity/dissimilarity of the distributions, a 
standard protocol of statistical analysis was followed for all ΔG and 
filter sets. A complete descriptive statistics including histogram 
(Figs. 2a, c, e, f), minimum, maximum, range, median, median 
absolute deviation, arithmetic mean, standard error of arithmetic 
mean, 95.0% confidence interval, trimmed mean (10%, two sided), 
standard deviation, variance, coefficient of variation, skewness, 
kurtosis and a data vector of percentiles (1, 5, 10, 20, 25, 30, 40, 50, 
60, 70, 75, 80, 90, 95, 99%) was calculated for all data sets with 
program package Systat 12 [127]. The median of differences (%, 
Fig. 1c) between vectors ( p! ) of tabulated percentiles of two sets 
(drugs and non-drugs) was calculated according to Eq. A3.  

 |)}{p| ; |}{pmin(|
|}{p-}{p|  100

 }{p  ;  )p(median (%)Difference
iDRUGS-NONiDRUGS

iDRUGS-NONiDRUGS
iDIFFDIFF ==

!

         Eq. A3 

Where DIFFp!  is the difference vector and {p…}i denotes the 
element of a vector. The spread of DIFFp!  was given as median 
absolute deviation. Results of descriptive statistics are tabulated in 
the Supplementary Material. 

Statistical Tests 

The Shapiro-Wilk [128], Kolmogorov-Smirnov [129], and 
Anderson-Darling [130] tests were applied to check if the data sets 
came from a normally distributed population (α=0.05). The null 
hypothesis was that the population is normally distributed. If the p-
value was smaller than significance level α, then the null 
hypothesis was rejected (the data are not from a normally 
distributed population). If the p-value was larger than α, then the 
null hypothesis that the data came from a normally distributed 
population was accepted. The statistics and p-values are tabulated 
in the Supplementary Material. As the data populations are not 
normally distributed, non-parametric tests are valuable, since they 
do not require assumptions on the distribution of the population and 
therefore are sometimes called distribution-free [131]. Thus, in the 
present study the non-parametric two-sided Kruskal-Wallis test 
(also called Wilcoxon rank sum test or Mann-Whitney [132] U test, 
α=0.1) and the two-sided Kolmogorov-Smirnov two sample test 
(α=0.05) were used to decide if two data sets came from the same 
population. The null hypothesis was that the two samples came 
from the same population and have the same distribution. If the p-
value was less than the α level, then the null hypothesis was 
rejected (the data are not from the same distribution). If the p-value 
was greater than α, then the null hypothesis that the data came from 
the same population was accepted. The statistics and p-values are 
tabulated in the Supplementary Material. All tests were performed 
with Systat 12, many cases were counterchecked and p-values were 
calculated in parallel with the program R [133].  

Fitting Distributions 

In all cases where the data allowed, PDF’s of the following 21 
distributions were fitted to histograms of each data sets (and their 
parameters estimated by the respective methods) using Systat 12. 
Beta, Chi-square, Erlang, Gamma, Gumbel, Logistic, Loglogistic, 
Smallest extreme value (method of moments); Normal, Lognormal, 
Logit normal, Exponential, Double exponential (Laplace), 
Gompertz, Inverse Gaussian (Wald), Pareto, Rayleigh, Weibull, 
Uniform, (maximum likelihood method); Cauchy (method of 

quantiles or order statistics); Triangular (modified maximum 
likelihood and moments). 

In all cases, 12 bin histograms were prepared for the fits. In the 
case of mixed normal distribution (Fig. 1b), and for refinement of 
some fits (especially for calculation of location parameters of 
Weibull distributions), the software Dataplot [134] along with the 
probability plot correlation coefficient plot (PPCC) method was 
used. Quality of fits was confirmed by Kolmogorov-Smirnov and 
Anderson-Darling tests with Systat 12. Only highly significant 
PDF’s (α=0.1) were selected for further use. The analytical form of 
PDFs (Fig. 2b, d) facilitated the mathematically accurate 
calculation of calibration of thresholds (Fig. 4a, b). Statistics of 
tests of fit, formulae of selected distributions and values of their 
location, shape and scale parameters of the PDF are listed in the 
Supplementary Material.  

Calibration of Thresholds 

The probability (PD) that a filter χ adopts a value between 
thresholds TMIN and TMAX for drugs is expressed as a percentage 
and named sensitivity (σ) in this study (Eq. A4), as it reveals 
whether a large enough section of the entire drug population is 
included in the region under question. The random variable  !D

"  
corresponds to the statistical event when a filter χ adopts a value for 
drugs (D). 

 ! = 100PD (TMIN " #D
$ " TMAX )     Eq. A4 

The drug-likeness ratio (DR) is expressed (Eq. A5) as the ratio 
of PD and the corresponding probability for non-drugs (PND). 

 
DR =

PD (TMIN ! "D
# ! TMAX )

PND (TMIN ! "ND
# ! TMAX )

    Eq. A5 

In the cases where fitted continuous PDFs are available for 
drugs (fD) and non-drugs (fND), the σ and DR of a filter χ can be 
expressed as Eqs. A6, and A7 respectively. 
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     Eq. A7 

Eqs. A6 and A7 and the cumulative distribution functions could 
be used in cases of χ = EIMW, EINHA, EIW, and MW. 

Depending on the types of the DR and σ functions, i.e. the 
relative location of the f functions, there are three cases to consider 
(Fig. 4). (I) If DR is increasing on the investigated domain of filter 
χ, then TMAX=+∞ and a TMIN can be calculated. This situation was 
experienced at the EI’s. (II) If DR has a maximum on the domain 
then both TMIN and TMAX can be calculated as in the case of MW. 
(III) Finally, if DR is decreasing then TMIN=-∞ and TMAX can be 
calculated as for logW. 

The TMIN and/or TMAX thresholds were calculated by solution of 
Eqs. A6 and A7, for a set of different σ and DR values using the 
integral forms, i.e. the cumulative distribution functions of the 
respective PDF’s at χ = MW, EIMW, EINHA, EIW. The equations 
were solved with the aid of Xplore, a program by Prof. David 
Meredith (Department of Mathematics, San Francisco State 
University). In the cases where continuous PDF’s (χ = NHA, logP, 
W, logW) could not be fitted, the histograms were used to estimate 
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thresholds applying the definitions of Eqs. A4, and A5. The details 
of the calculations can be found in the Supplementary Material. 

Disease Specificity 

A set of 309 drugs of this study (excluding the very small 
molecules ethanol and piperazine) was divided into sub-sets 
according to the 14 disease categories of the DrugBank database. 
These 14 disease categories were: Alimentary tract and metabolism, 
Blood and blood forming organs, Cardiovascular system, 
Dermatologicals, Genito-urinary system and sex hormones, 
Systemic Hormonal preparations (excluding sex hormones and 
insulins), Antiinfectives for systemic use, Antineoplastic and 
immunomodulating agents, Musculo-skeletal system, Nervous 
system, Antiparasitic products, including insecticides and 
repellents, Respiratory system, Sensory organs, and others which do 
not fit in the above categories (Various). Non-drug molecules 
having the closest ΔG were selected for each member of each drug 
sub-sets using an in-house program. The difference in ΔG was set 
not to exceed 1 kcal/mol for the drug-non-drug pairs, and indeed it 
was much less for all cases. One non-drug was used only once for 
each sub-set. Thus, two sub-sets of compounds (drugs and non-
drugs) with overlapping ΔG distributions were available for a 
disease-specific analysis. Descriptive statistics (median, median 
absolute deviation, mean, standard deviation, 1st and 3rd quartiles, 
minimum and maximum) were calculated for all disease categories, 
and filters by the same program. Boxplots generated by the program 
R were used for visual comparison of distributions. Only sub-sets 
having N>10 members were used for final discussion (Fig. 5). 
Details of the disease-specific analysis can be found in the 
Supplementary Material. 

SUPPLEMENTARY MATERIAL  

Supplementary material is available on the publishers Web site 
along with the published article. 
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