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1 Introduction

The structural characteristics of small compounds are major
determinants in the early steps of drug design. Various
threshold or range sets (such as Lipinski’s rule-of-five for
orally bioavailable compounds[1] and others[2–19]) are based
on molecular descriptors and have been designed and ex-
tensively used for this task. However, it is still an open and
active area of research how known drugs’ and non-drugs’
areas of chemical space locate relative to each other. In par-
ticular, the relative location of drug areas in the chemical
space belonging to distinct disease categories is missing. A
better knowledge of these localizations can aid in the im-
proved profiling of chemical libraries, the optimization of
compounds, as well as better target compounds to reduce
selectivity issues. The property or label of ‘drug’ for a com-
pound is not inherent, but can change with time, i.e. ,
a compound may receive the label and consequences of
a ‘drug’ by the United States Food and Drug Agency (FDA)
or another drug agency, or may even be retracted from
market or clinical use,[20] and the label of ‘non-drug’ can
also change. Also important are advances in the last 50
years in molecular biology, synthesis and analysis, high-
throughput, and other technologies, that direct and allow
medicinal chemists to work with more complex chemistries,
and this, as consequence, leads to changes in drug- and
non-drug-likeness characteristics.[21] Therefore, one needs to

define ‘drug-likeness’ as a particular set of properties or
fragments that are present in currently-defined drug com-
pounds, as opposed to non-drugs, in order to improve
compound libraries to have chemical characteristics similar
to those of known drugs to perhaps better and expedite
drug discovery and design. Thus, ‘drug-likeness’ characteris-
tics are also subject to change over time due to new and
retracted drugs. One should keep also in mind that drug-
likeness characteristics are derived from databases of other
compounds and are therefore, mostly a statistical descrip-
tion and should not be used in the context of characteriz-
ing single compounds, but rather chemical libraries.[10] Evi-
dently, a compound that possesses good ‘drug-likeness’
will not mean that such compound will become a drug,
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Abstract : The physicochemical descriptor space has been
extensively mapped and described in the literature for
orally administered drugs and lead compounds. However,
consideration of negative examples (non-drugs) or disease
pathophysiology is not common in many studies. In the
present work, a principal component analysis was carried
out using drugs and non-drugs taking into account dis-
ease- and organ-specific categories, as well as different ad-
ministration routes in addition to oral. The study involves
1386 relevant small-molecules including natural and syn-
thetic products. Drug-specific as well as disease-category-

specific or organ-specific regions and their respective
threshold sets (ranges of descriptors) relative to non-drugs
were elucidated on the scores plot and validated with ex-
ternal, independent sets of drugs and non-drugs. The re-
spective loadings plot of molecular descriptors was ration-
alized in terms of physicochemically relevant groups related
to the components of solvation free energy. The results of
this analysis can contribute to the improved profiling of
drug candidates and libraries making use of disease- and
organ-specificity coded by physicochemical descriptors and
ligand binding efficiency.
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just that it has chemical properties similar to those of drug
compounds. Other issues are at stake here, such as phar-
macodynamics, pharmacokinetics, side-effects, toxicity, ther-
apeutical windows, market considerations, competitors, in-
tellectual property, among others.

Previous work by several groups[19,20,22,23] has shown how
to profile compound libraries in terms of their drug- or
lead-likeness,[24] using non-drugs as comparative examples,
though few studies regularly use non-drugs as negative
controls. Certainly, the choice of descriptors and the data
available can influence the outcome of any analysis. The
mapping of the chemical space location of drug com-
pounds, lead compounds, and non-active compounds has
been described in cartography terms such as ChemGPS,[25]

and a chemico-biological atlas.[26] Further, compounds de-
signed for a particular target such as protein kinase inhibi-
tors,[27] as well as for some other targets have been profiled
by their physicochemical (descriptor) nature (for a review
see the literature[28,29]). Also, the use of ligand efficiency
values[30–33] as measures to describe binding can provide
new profiling prospects. There is important information to
be gleaned from considering a large dataset of drug com-
pounds from different disease categories compared to
a non-drug “negative” dataset with similar binding strength
(DG) profile. For instance, multivariate statistical techniques
can provide associations between the important compound
properties providing discriminative patterns between
groups.

In the present work, the purpose was not to pinpoint
the disease categories of particular compounds, since they
are known to overlap, and more information is accruing on
drug repurposing, as well as systems pharmacology (the in-
teraction of drugs or chemical compounds with biological
networks at the organism, tissue, cellular, and molecular
level, as described, e.g. , in Taboreau et al.[34]). Rather, the
focus is on describing the chemical (descriptor) space of
different disease categories at the highest anatomical level,
in order to prove a concept that can be further refined and
adapted. Knowledge of these chemical spaces is valuable,
however intertwined and co-dependent they may be. In
order to achieve these aims, the following goals and tasks
were carried out. (a) A previously compiled set of drugs
and non-drugs was characterized with molecular descrip-
tors. (b) Multidimensional descriptor space was analysed,
distilling the principal components of their variation; (c)
Principal components analysis was carried out, as well as
the investigation of how structural representation deter-
mines the relative position of drug and non-drug subsets.
(d) The ranges of molecular descriptors (upper and lower
thresholds) for drug disease categories were determined,
establishing disease or organ likeness ranges for chemical
library design. (e) And finally, the PCA model was validated
with several independently compiled validation sets.

2 Methodology

2.1 Experimental Data

The set of data for the analysis (training set) consisted of
631 small molecules (see Table S1) of which 311 are ap-
proved drugs and 320 are non-drugs, and was collected for
our previous publication.[35] Briefly, structures and experi-
mental inhibition or dissociation constants (Ki or Kd) for
drugs were gathered from the KiBank[36,37] and PDBBind ver-
sion 2005[38] databases, the list of small-molecule approved
drugs being obtained from the DrugBank.[39] Non-drug
structures and experimental Ki or Kd values were obtained
from the PDBBind and SCORPIO[40] databases, as well as
two articles,[41,42] and consist of compounds that are not
classified as drugs in the DrugBank. Experimental Ki or Kd

values were converted to experimental binding affinities
(DGexp) at 298.15 K. The selection criteria for the small mole-
cules in the training set were: (i) availability of DGexp infor-
mation and (ii) the subsets had to possess a similar range
of DGexp values. Notably, several studies have shown[43–47]

that molecular descriptors such as molecular mass (MW)
hold ligand non-specific information on its DG. All selected
non-drugs are bioactive molecules, but not therapeutics,
and only 47 % of them pass Lipinski’s drug-likeness rules
(see Table S1). This provides a challenge to distinguish
drugs from active, non-therapeutic non-drugs.

Compounds in the set of drugs had an extra dimension
as they were assigned to different disease categories (DC)
according to organ or system on which they act, as classi-
fied in the DrugBank (first and highest, anatomical, level of
ATC classification). In total, 14 different DCs are presented,
namely, alimentary tract and metabolism, blood and blood
forming, cardiovascular system, dermatological, genito-uri-
nary system, systemic hormonal, anti-infective, antineoplas-
tic and immunomodulating agents, musculo-skeletal
system, nervous system, antiparasitic, respiratory system,
sensory organs and various drugs (see details in Table S1).
The last DC contains drugs, which cannot be included into
any other categories. It is important to note that drugs
indeed act on several targets and disease categories which
may have overlap and, in the current set some drugs
belong to more than one category since they may have an
effect in several diseases. Increasingly, this is the result of
drug repurposing when new uses and indications are
proven for already existing drugs.[20,48] In addition, our drug
set contains several administration routes in addition to
oral.

A separate validation set was also constructed using data
different from the training dataset, and as such, can be
considered as an independent collection of compounds.
The experimental binding information of the validation set
was obtained from the PDSP database,[49] as well as recent
FDA-approved drugs, and non-drugs from the PDBBind da-
tabase version 2009.[50] Both sets were checked to exclude
previous compounds already included in the training set,

370 www.molinf.com � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2012, 31, 369 – 383

Full Paper Alfonso T. Garc�a-Sosa et al.

www.molinf.com


and for being non-redundant. Non-drugs of the validation
set were verified to have no drug action reported in the
DrugBank. The final number of compounds in the valida-
tion set was 118 and 395, for drugs and non-drugs respec-
tively (see Table S2).

The third set of compounds was obtained from the
Sigma-Aldrich catalog.[51] It consisted of compounds that
did not have ‘exotic’ elements, i.e. , consisted only of the
atoms C, N, O, H, P, S, Si, Cl, and F. No pesticides were in-
cluded and the resulting 350 compounds were not avail-
able from any other vendor, i.e. , were exclusive to this
vendor. Form these compounds, only one tautomer or ste-
reoisomer was selected when multiple were found, and the
rest were deleted. In addition, for all compounds their pos-
sible activity was checked in the ChEMBL database,[52] and
those active (6 compounds) were removed from this set,
leaving 242 compounds in order to have a clean, no-activi-
ty non-drug dataset for testing (see Table S3). This altogeth-
er leads to the 1,386 compounds analysed in the manu-
script.

2.2 Conformation Space Analysis and Quantum Chemical
Calculations

In order to achieve a consistent representation of the small
molecule structures, a search of conformational space for
each structure was carried out. This was accomplished with
MacroModel[53] as part of the Schrçdinger Suite of software
packages. The Merck Molecular Force Field (MMFFs) param-
eterization[54,55] and Monte-Carlo Multiple Minimum
(MCMM) search method[56,57] or the Mixed torsional/Low
mode sampling method[58] were applied for the conforma-
tional space analysis. Depending on the molecule, the max-
imal number of steps (conformations) scanned was 15,000
and the water environment for the molecules was account-
ed for using a GB/SA model.[59] For each molecule, confor-
mational search variables were set automatically and the
conformer with the lowest energy was selected for the fur-
ther steps.

The geometry of the lowest energy conformer of each
small molecule was further optimized using semi-empirical
quantum chemical methods. Namely, the AM1 parameteri-
zation[60] was used to characterize molecular structures, and
the eigenvector following algorithm[61] was used for geom-
etry optimization. Both methods were used as implement-
ed in the MOPAC 6.0 program.[62] For four molecules the
geometry optimization could not converge because of
symmetry constraints that the optimizer was not able to
solve. These molecules are vasopressin (d303) and oxytocin
(d587) for drugs and 1gux (n101) and 1mpa (n170) for non-
drugs. These molecules were therefore excluded from fur-
ther analysis. After the conformational search and geometry
optimization, the final dataset consisted of 628 small mole-
cules (310 drugs and 318 non-drugs) in the training set,
and 512 small molecules in the validation set (117 drugs

and 395 non-drugs), plus 242 compounds in the no-activity
non-drugs test set.

2.3 Molecular Descriptors

Molecules were subsequently characterized with molecular
descriptors. MOPAC calculations provided the electronic,
steric, and energetic parameters needed to calculate the
molecular descriptors. Codessa software[63,64] was used to
calculate constitutional, topological, geometrical, charge-
distribution related, and quantum chemical molecular de-
scriptors. Initially, 627 descriptors were calculated. The
DGexp was also included in the set of descriptors along with
the calculated logarithm of the octanol/water partition co-
efficient using an atom contribution method (XLogP),[65] as
well as three different efficiency indices for molecular
weight (MW), Wiener index (W) and number of heavy
atoms (NHA), in brief : EIm = jDGexp/MW j ; EIw = jDGexp/W j ;
and EIh = jDGexp/NHA j . From the set of 632 descriptors,
those with missing values were excluded and the remain-
ing 307 descriptors were subjected to principal component
analysis.

2.4 Principal Component Analysis

Principal component analysis (PCA) is a widely used multi-
variate data exploratory technique for pattern recognition.
In PCA, the data matrix (D) is expanded as a sum of the
principal components defined by scores and loadings,

D ¼ T � P ¼
Pk

n¼1

tnpn ¼
Pk

n¼1

ti;npn;j. In the equation, T and P are

the score and loading matrices, respectively; tn and pn are
the score and loading vectors for a given component,
which are expanded to their elements ti,n and pn,j, respec-
tively. The index i corresponds to observations (chemicals)
and the index j corresponds to variables (descriptors), and
n is the number of principal components (PC). The number
of PCs (scores, loadings) existing in characteristic vector
space can be equal to, or less than, the number of variables
in the data set. The principal components are uncorrelated,
i.e. , orthogonal to each other. The first principal component
is defined as that giving the largest contribution to the re-
spective PCA of linear relationship exhibited in the data.
The second component may be considered as the second
best linear combination of variables that accounts for the
maximum possible of the residual variance after the effect
of the first component is removed from the data. Subse-
quent components are defined similarly until practically all
the variance in the data is exhausted. The graphical plots
of the score and loading vectors also reveal relationships
between the objects and variables. In our case, the score
plots summarized patterns among the drugs and non-
drugs (observations) and the loading plots summarized
patterns for the molecular descriptors (variables). The load-
ing plot also enables interpretation of the patterns seen in
the score plot. Hence, the patterns of these two presenta-
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tions aid in the analysis of information encoded by the
chemical structure.

A vital issue for the PCA model is the identification of
strong and moderate outliers which could skew the model.
Strong outliers can be traced in plots of PC scores while
moderate outliers can be found by inspecting the model
residuals. Generally, the strong outliers tend to significantly
shift (rotate) the PCA model towards them. An appropriate
statistical method for identifying such outliers is Hotelling’s
T2,[66] a generalization of the Student’s t-statistic. T2 is graph-
ically presented as an ellipsoid of T2 range on score plots
and indicates deviations far from the defined confidence in-
tervals (95 % or 99 %). Strong outliers can also be spotted
by the distance to the model X (DModX). Observations
with a DModX twice over a critical value (D-Crit) are strong
outliers to the PCA model.[67]

The set of 307 descriptors was analysed with PCA as im-
plemented in the SimcaP + software.[68] The descriptor
scales were pre-processed to provide all scales with equal
weight, with the standard unit variance scaling method,
where the data is standardized, centralized and normalized
using the sample standard deviation, variance and mean.
The absolute value of the variables was used except in the
case of descriptors that spanned both positive and nega-
tive values in order not to neglect information.

3 Results and Discussion

3.1 PCA Model and Outlier Analysis

The first PCA Model M1 on 307 descriptors resulted in 19
principal components – PCs (Table S4). Analysis of the pre-
diction quality of the model (Q2) revealed that the first
three PCs captured most of the structural variation in the
dataset due to unstable prediction quality for more than

the first three PCs (Figure S1). Next, outlier analysis was per-
formed for the model including the first three PCs. Analysis
by distance to the model (DmodX, Figure S2) revealed
seven strong outliers: allopurinol (d5), ethanol (d99), lin-
dane (d151), 1c3x (n49), 1iht (n129), 1l8s (n153) and 1z71
(n261). The Hotelling’s T2 range within a 99 % of confidence
interval (Figure S3) on score plots reveals nine additional
unique strong outliers in the model: piperazine (d224),
1btn (n44), 1hgt (n110), 1joc (n143), 1w1d (n237), 1xd0
(n250), 2hrp (n279), 2msb (n282), and 3er5 (n291). In total,
16 strong outliers were excluded, representing 2.5 % of the
compounds in the dataset. The skeletal formula of strong
outliers (Figure S4) reveals that those chemicals are mostly
either very big or very small relative to the remaining set of
data. Subsequent analysis of the loadings plot showed sev-
eral overlapping descriptors. Hence, redundant descriptors
were eliminated. Descriptors relating to sites-specific charg-
es and to energy partitioning terms originating from the
quantum chemical calculations, and local descriptors were
also removed, as well as those with very little contribution
to the overall model. A new set of variables consisted of
116, whole molecule descriptors. Further, a new PCA Model
M2 was derived that described structural variance with 14
PCs (Table S4).

3.2 Pattern Analysis of Scores and Loadings

Figure 1a shows that the training drugs and non-drugs do
occupy different areas on the score plot with a borderline
overlapping area. It can be seen that most of the drug mol-
ecules (198) are located in the upper right quadrant (tA) on
the plot of 1st and 2nd scores, while encompassing the
smallest amount of non-drugs (33). The upper left quadrant
(tB) and lower right quadrant (tC) also contain a considera-
ble number of drugs (40 and 60 respectively), but a higher

Figure 1. PCA Model M2 plots for 1st and 2nd principal component scores (a) and loadings (b).
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proportion of non-drugs. The lower left quadrant (tD), how-
ever, contains only eight drugs among a vast majority of
non-drugs. Drugs in quadrant D belong to antineoplastic
agents (DC8; daunorubicin (d64), doxorubicin (d87), metho-
trexate (d169), raltitrexed (d246)), alimentary tract & metab-
olism (DC1; acarbose (d1), aprepitant (d19)), blood and
blood forming (DC2; dipyridamole (d80)) and various
drugs’ group (DC14; ouabain (d205)). All of the drugs in
quadrant D are located close to the centre of the model,
with the exception of acarbose (d1). All of them, with the
exception of aprepitant, dipyridamole, and raltitrexed, are
either natural products or modifications of a natural prod-
uct. The complete list of drug and non-drug compounds,
as well as their disease category (in the case of drugs) and
quadrant location (tA, tB, tC or tD) is shown in Table S1 in
the Supporting Information. 90 % of the drug compounds
stayed in the following focused range according to the
scores in each axis : t[1] �5.8 to 11; t[2] �5.09 to 6.08, t[3]
�4.25 to 3.84 (e.g. , see the plot of t[1] vs. t[2] in Figure 1a).
This presents a direct way of comparing and using these
ranges together with other rule based methods based on
90 % of drug compound populations.[1,20]

Natural products and their modification have served as
starting points for many therapeutics. 53 drug compounds
were identified as natural products or semi-synthetic com-
pounds (i.e. , those drugs that are produced by using a natu-
ral-product intermediate) and located in the map (data not
shown). Even though they can be found in all four quad-
rants, nearly half (22) of them are comprised in quadrant
tA, which can be understood by natural systems having
fine-tuned chemical compounds by evolution for bioactivity
for a long time and number of generations.

The molecular descriptors group in a clear manner on
the loadings plot (Figure 1b). The complete list of variables
(molecular descriptors) together with their location in
quadrants (pA, pB, pC, pD) is shown in Table S5 in the Sup-
porting Information. To explain these groupings, we make
use of solvation free energy and its components. The solva-
tion free energy comprises at least four main compo-
nents[69.70]: DGS =DGcavity +DGel +DGdisp +DGHB, where
DGcavity is the cavity-formation term, DGel is the free energy
of electrostatic interactions, DGdisp depicts dispersion inter-
actions, and DGHB is the term arising from hydrogen bond
formation. As discussed in our earlier work,[71,72] certain mo-
lecular descriptors closely reflect the terms of the free
energy of solvation. For example, the cavity formation term
can be satisfactorily modeled with the use of topological
and geometrical descriptors, semi-empirically derived mo-
lecular polarizability, and entropy. Electrostatic and quan-
tum chemical descriptors contribute significantly to both
non-specific and specific solvation either through atomic
charges, charged surface areas, dipole moments, reactivity
indices, or other similar structural parameters. Descriptors
designed for hydrogen bonding include molecular surface
areas that are confined by H-bond donor or acceptor sites,
as well as those that merely count such sites derived from

atomic charge considerations. Such an approach facilitates
the discussion of the main structural characteristics possibly
influencing intermolecular interactions of drug and non-
drug molecules. In this way we can group descriptors into
4 groups. The biggest single group is formed by the 46 de-
scriptors that are related to the cavity formation term, or
interactions that are related to the size of the molecule
(see Table S5). They are grouped in the upper left quadrant
(pB) of the loadings plot (Figure 1b). The group consists
mostly of constitutional (atom, ring counts, etc.) descrip-
tors, topological descriptors, and molecular surface area de-
scriptors. The next two groups are located in the lower left
quadrant (pD), forming distinct regions but overlapping
with each other. The groups are formed by the descriptors
that reflect (i) hydrogen bonding or (ii) electrostatic interac-
tion characteristics of the molecules. Hydrogen bonding is
characterized with 25 descriptors that reflect H-bonding
surface area or are simple counts of H-bond donor and ac-
ceptor sites. Electrostatic interactions are characterized with
24 descriptors that are mostly related to the charge distri-
bution and/or charged partial surface area of molecules.
The fourth group occupies upper (pA) and lower (pC) right
quadrants and consists exclusively from the descriptors
that are relative measures of molecular sizes, i.e. descriptors
that are divided by the maximum number of atoms, maxi-
mum size/distance, maximum charge, etc. These are de-
scriptors for which their relationship with solvation free
energy terms is currently not determined and that most
presumably combine different types of interactions.

The model included also a fifth group of descriptors con-
sisting of three efficiency indices (EIh, EIm, EIw), as well as
XlogP and DGexp. DGexp is adjacent to electrostatic descrip-
tors and is located on border-line between quadrants pC
and pD. At the same time XlogP is located on the border of
quadrant pA that corresponds to the score plot quadrant
tA which contains most of the drugs, indicating that drugs
are mostly logP optimized. The position of efficiency indi-
ces in the area of drug molecules indicates that they can
be a valuable tool in distinguishing between drugs and
non-drugs. They are also relative measures, and as such,
may be indicating the simultaneous optimization of several
molecular properties that characterize drug compounds
over non-drugs.

Deeper analysis of the first three scores shows that PC1
is strongly influenced by the size of the small molecules
(Figure 2a), running roughly parallel to the horizontal axis
and decreasing from left to right, i.e. , decreasing as it ap-
proaches to quadrants tA and tC. This is also visible in the
loadings plot where size-related descriptors (such as MW
and other size-related parameters) are located on the left-
hand side (in pB) of this axis. PC2, on the other hand, is
strongly influenced by the hydrophobic properties of the
molecules (Figure 2b), running also roughly parallel to the
vertical axis in the score plot and decreasing as it leaves
quadrant tA. PC3 does not correspond to one clear struc-
tural effect. The best optimal single molecular characteristic
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to explain PC3 is hydrogen bonding, namely, hydrogen
bond acceptor capabilities (Figure 2c) running roughly di-
agonal between the axes, decreasing as it reaches into
quadrant tA. This is also visible on the loadings plot, where
hydrogen bonding descriptors are grouped in quadrant pD
that corresponds to the area of the score plot (quadrant
tD) of compounds with the highest number of hydrogen
bonds. As a conclusion, this pattern indicates that most
drugs are well-grouped in chemical space and have a rela-
tively small size, a balanced hydrophobicity[73] (as measured
by non-extreme values of XlogP), as well as a relatively
small amount of hydrogen bond acceptors.

3.3 Pattern Analysis of Specific Disease Categories

The coordinates of the first three components for all 14
DCs, i.e. , the coordinates of score ranges, are shown in
Table 1. These coordinates define the precise location for
each disease category in descriptor space. It can be seen
that the spread in coordinates is much wider for some DCs
than to others. Based on those observations 14 DCs can be
classified into three classes depending on whether: (i) all
drugs in the category are clustered close to each other; (ii)
similar to the previous class, but only a few drugs are ex-
tending from the rest of the group; or (iii) the drugs in the
DC are spread considerably over the model. For each class
one example is discussed in the main text. PCA plots and
chemical structures for all of the drugs broken down per
each disease category can be seen on Figures S6–S33 in
the Supporting Information.

The well-grouped disease categories (class i) are genito-
urinary systems (DC5), systemic hormonal drugs (DC6) and
anti-parasitic products (DC11). The prominent example is
DC5 (Figures S14–15), drugs for genito-urinary systems,
comprised of molecules that are mostly steroids. Many
compose a pharmacophore that is responsible for binding
to the estrogen receptor or else to the androgen receptor,
whereas the remaining are cGMP phosphodiesterase inhibi-
tors, or antifungals. Almost all drugs in this group are
placed in the drug-dominated quadrant tA. DC5 drugs that
are placed in quadrant tB are more flexible than those in
quadrant tA.

In the majority of cases, the disease categories are well
grouped with a few compounds extending from the gener-
al trend (class ii). For instance, all alimentary tract and me-
tabolism drugs (DC1) are located in almost the same area
(Figures S6–7). Only one molecule, acarbose (d1), was set
far away. This can be explained by the structure of acarbose
which is a long molecule (oligosaccharide) with four rings
and an abundance of hydroxyl groups. This molecule is
used in the small intestines to inhibit the digestive enzyme
alpha glucosidase to reduce levels of sugars, and therefore,
does not need to cross any membrane and is distinct from
other drugs in this disease group which fall under drugs for
gastrointestinal or acid problems, for example, that have
a different mechanism (e.g. , proton pump inhibitors or his-

Figure 2. Plot for 1st and 2nd principal components grey scaled
according to the gradient in three different descriptors: MW (a),
logP (b), and number of hydrogen bond acceptors (c).
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tamine antagonists). Epinephrine (d93), another slightly de-
viating point, is on the contrary a small and very simple
molecule.

Two disease groups (DC7 and 8) are well spread over the
model plane (class iii). For instance, drugs that act as anti-
neoplastic agents (DC8) are most widely spread in all four
quadrants (Figure S20–21). This may be an indication that,
structurally and chemically, they include different molecules
for a variety of cancers targeting different organs. Also,
since the targets of antineoplastic agents are human cells,
it may show the lack of specificity as compared to other
disease groups. Fluorouracil (d109) is a small, fluorinated
molecule while paclitaxel (d208), tacrolimus (d270), vinblas-
tine (d306), and vincristine (d307) are large, natural product
molecules located in the same region. Daunorubicin (d64)
and doxorubicin (d87) have the same substructure and
pharmacophore, and thus they are in almost the same loca-
tion.

Some drugs are present in several disease categories
that illustrate the trend of drug repurposing, and can there-
fore deviate from central core groups in a given DC, due to
their properties. For example, erythromycin (d95) is part of
the dermatological agents category (DC4) since it is a drug
applied to the skin, but it is also an antibiotic (DC7) since
its function is to treat infections such as in acne. Tacrolimus
(d270), another deviation, is used to treat infections on the
skin (DC4), as well as to suppress the immune system in
transplantation therapy (DC8). Molecules near the centre of
the plot in Figure 1a may be classified as promiscuous or
unspecific, a good example being the glucocorticoid ste-
roids (d30, d68, d126, d230) that even if clustered tightly
together, have a plethora of interactions which explain
their multiple side-effects (DC: 1, 3, 4, 6, 12, 13) observed in

their clinical use.[74] More targeted regions of physicochemi-
cal space, and further from the centre of the plots, may be
more specific. Alclometasone (d4) and prednisolone (d230)
are very similar molecules, alclometasone containing
a chlorine atom. Alclometasone is included in only two cat-
egories (DC: 4, 13), but prednisolone in six (DC: 1, 3, 4, 6,
12, 13). This shows that a difference of only one atom can
dramatically change the therapeutic properties of a mole-
cule. Codeine (d62) and morphine (d180) are almost the
same molecule, codeine has an extra methyl group. This
methyl decreased the membership in two disease catego-
ries (codeine and morphine are part of two and four dis-
ease categories, respectively). Drug repurposing will have
the effect of extending the number of DCs for such a drug
with several indications and uses. In this sense, DC chemical
space is also a moving definition. This is of benefit for new
treatments and indications. Drug/non-drug comparisons
will be evidently better refined than interDC comparisons,
since for obvious reasons, targets are often present in more
than one DC, given that, e.g. , receptors can be present
throughout the body, and have different subtypes or con-
centrations in different organs. However, the focus is on
the chemical space of specific diseases or organs, not spe-
cific chemical compounds. Therefore, the focus of the pres-
ent study is the chemical space available for compounds
for a specific disease or organ compartmentalization, rather
than in the multiple diseases a particular drug can be of
use in. The advantages of considering DC chemical space,
as opposed to drug-target or drug-many targets interac-
tions, are that patterns can be elucidated irrespective of
ligand structure or protein function or sequence. The pres-
ent method described in this publication can be used to-

Table 1. Thresholds that apply to disease categories for the first three scores [a].

Disease categories n t[1] t[2] t[3]

min–max min–max min–max

Class i
DC5: Genito–urinary system 27 �1.92–9.29 0.81–7.14 �5.53–3.53
DC6: Systemic hormonal 4 0.84–1.63 �1.58–�0.87 1.77–2.68
DC11: Anti–parasitic products 4 1.89–7.26 �0.64–3.13 �3.82–�0.12

Class ii
DC1: Alimentary tract 32 �1.03–8.08 (�13.83–8.08) �3.95–5.02 (�10.28–5.02) �5.53–3.99
DC2: Blood and blood forming 7 �2.27–8.49 (�4.33–12.07) �2.51–2.68 (�3.95–2.68) �2.32–3.85 (�4.00–6.76)
DC3: Cardiovascular system 59 �2.84–11.53 (�4.57–11.54) �9.38–7.93 �3.26–6.30 (�5.21–6.30)
DC4: Dermatologicals 19 �1.92–8.63 (�12.18–11.79) �3.86–5.51 �2.84–3.04 (�5.53–4.68)
DC9: Musculo–skeletal system 10 4.51–9.31 (�3.92–13.26) �1.40–1.91 (�1.40–5.95) �4.21–�0.09 (�6.11–2.07)
DC10: Nervous system 96 �0.86–13.88 (�4.65–13.88) �3.64–6.53 (�5.76–6.53) �6.44–6.90
DC12: Respiratory system 26 �1.83–9.73 (�1.83–11.24) �3.95–6.09 (�6.49–7.41) �2.78–3.21
DC13: Sensory organs 34 �2.15–9.73 (�10.69–11.96) �3.95–3.66 (�7.96–5.12) �5.53–6.31
DC14: Various 21 1.74–10.00 (�7.45–11.33) �2.43–3.96 (�2.43–6.56) �4.26–3.81 (�4.26–7.37)

Class iii
DC7: Antiinfectives 29 �10.69–8.51 (�12.22–11.79) �6.99–6.70 �5.53–2.49 (�5.53–5.65)
DC8: Antineoplastic agents 22 �5.86–7.11 (�12.44–12.37) �7.95–8.59 (�9.44–8.59) �3.90–3.04 (�6.43–3.04)

All drugs in set 306 �13.83–13.89 �10.28–8.59 �6.44–7.37

[a] Values in parenthesis are for the cluster with extending molecules; n : number of compounds.
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gether with polypharmacology or systems pharmacology[34]

in a complimentary way.

3.4 Pattern Analysis of Non-Drugs

Quadrant tA, mostly drugs, also includes 33 non-drugs.
Compounds in the quadrant share a number of common
structural features. For instance, of the non-drugs, three
molecules contain chlorine that is a common functional
group for drugs: 40 drugs in this quadrant also contain it.
A number of non-drug molecules in the quadrant have
very flexible structures, whilst most of drugs in the quad-
rant are rigid. Five non-drugs in this quadrant contained
sulfur, similarly to many drug molecules (as sulfonamides,
for example). Only one non-drug molecule had a triple
bond while almost all drugs with triple bonds are in quad-
rant tA. These features: chlorines, sulfonamides and triple
bonds, being present in non-drugs in this quadrant show
that they are features that help classify drugs since they are
the overwhelming majority of compounds in this region.
The complete list of non-drug molecules in quadrants is
provided in Table S1. Here we describe a few examples for
each quadrant. A first non-drug example molecule for the
quadrant tA (Figure 3 and S5) is the compound taken from
1kdk (n149), which is the naturally produced androgen di-
hydrotestosterone that has bioactivity and is involved in
several pathologies. Its structure is rigid with several fused

rings, but not very polar. A second example is the com-
pound from 1if8 (n128), which has a phenylsulfonamide
substructure and balanced physicochemical and structural
properties, which would indicate a potential drug-like char-
acteristic. A schematic diagram with the location of exam-
ple non-drug compounds located in their positions on the
four quadrants is shown in Figure S5 in the Supporting In-
formation.

Quadrant tB includes the biggest number of non-drugs
(Figure 1a). They have a tendency to be large and non-
polar, similarly to saccharides and peptides. For example,
the ligand from 1hvr (n205) contains six phenyl rings ar-
ranged around a central cyclic urea with few polar groups,
which is or was an experimental compound for HIV-1 pro-
tease inhibition[75] (Figure 3 and S5). Another example is
the poly-proline biological compound in 1awi (n13)
(Figure 3 and S5), the partner molecule for human platelet
profilin, which is a protein that is implicated in cytoskeletal
regulation and morphogenesis.

Quadrant tC contains compounds with relatively small
size, and those that are near the border region with quad-
rant tA display interesting, balanced properties similarly to
drugs. Notable examples are the experimental compound
for human carbonic anhydrase II inhibition, namely the
small sulfonamide AL-4623[76] (1bnq (n40), Figure S5, similar
in structure to the drugs brinzolamide and dorzolamide), as
well as the small benzylsuccinate 1wht (n244) that is part

Figure 3. Chemical structures of selected representative non-drugs.

376 www.molinf.com � 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Mol. Inf. 2012, 31, 369 – 383

Full Paper Alfonso T. Garc�a-Sosa et al.

www.molinf.com


of the benzoate degradation pathway, in addition to 2a4m
(n265), which is the natural aminoacid L-tryptophan. The
most typical non-drugs in this quadrant, though, are small
and very polar compounds, such as 1e6q (n76) (see
Figure 3 and S5), as well as small saccharides.

Quadrant tD is almost exclusively composed of non-
drugs. They are characterized by being large and polar
compounds. Many non-drugs in this region contained one
or more phosphate groups (for example, compounds 1u1b
(n228) and 1f3f (n84) in Figure 3 and S5). Typical non-drugs
also have many carboxyl groups. Some non-drugs are mol-
ecules with aldehyde, disulfide or sulfhydryl groups and
many of them have a long chain with several cycles at-
tached. Some non-drugs are carbohydrate polymers, similar
to acarbose (d1), which are located far away from drugs.
Often, non-drugs have more than one of these described
structural features and as such, they make these molecules
less drug-like.

Some of the non-drugs have activity against the same
targets as the drugs, such as methionine aminopeptidase,
carbonic anhydrase, or phosphodiesterase. This gives validi-
ty to the selection of compounds used as non-drugs, since
they have comparable features and binding profiles that
the drug compounds have, and provides a non-biased eval-
uation. They have also been studied extensively, given the
availability of protein-ligand crystal structures and bio-
chemical and thermodynamic characterization.

3.5 Disease-Likeness and Respective Ranges of Descriptors

The coordinates of the first three components for all of the
disease categories, the coordinates of score ranges, de-

scribe the area that they occupy in the PCA model (see
Table 1 and discussion in Section 4.3). In addition, two
other sets of ranges (upper and lower thresholds) were es-
tablished using molecular descriptors to define disease-like-
ness. The first set was defined for each disease category for
values of MW, XlogP and number of hydrogen acceptor
sites, and they were also compared to known drug-likeness
and lead-likeness parameters (see Table 2). The second set
of ranges were defined for the three efficiency indices EIh,
EIm, and EIw for each disease category, as well as for all the
drugs in the dataset (see Table 3).

To establish broad reference points (goalposts) for effi-
ciency indices, assuming a compound with sub-micromolar
potency and a MW around 500, one could expect an EIm of
ca. 0.02 kcal mol�1 Similarly, assuming a typical drug com-
pound with less than 50 heavy atoms, one could expect
a value for EIh of 0.2 kcal mol�1 NHA�1. These values for
a lead like compound would broadly change to around
MW = 350 and 35 heavy atoms, and thus correspond to EIm
ca. 0.029 kcal mol�1 and EIh ca. 0.29 kcal mol�1 NHA�1. We
have previously determined similar values of EIw for smaller
sets of drug compounds to be around 0.001 to 0.070 kcal
mol�1.[33,35]

Some disease categories have a well-defined threshold
set, which give an indication of their specificity. This is es-
pecially the case for those DCs in class (i) as well as in class
(ii), such as genito-urinary system (DC5) compounds, respi-
ratory system (DC12), as well as nervous system (DC10)
compounds. This provides information on how to be more
focused in the design of compounds that have a specific
human organ in which they will be effective. For example,
genito-urinary system drugs have relatively tight thresholds

Table 2. Thresholds that apply to disease categories and known drug-likeness and lead-likeness parameters for MW, XlogP, and number of
acceptor sites. Values in parenthesis are for the cluster with extending molecules.

Disease categories [a] MW (g mol�1) logP (as XlogP) #H-acceptors

min–max min–max min–max

Class i
DC5 206.3–531.4 0.1–7.3 1–7
DC6 360.4–392.5 0.5–1.1 5
DC11 248.7–369.4 2.04–6.3 3–5

Class ii
DC1 252.3–534.4 (183.2–645.6) �0.5–5.5 (�6.8–5.5) 1–7 (1–14)
DC2 183.2–360.5 (131.2–508.6) 0.1–3.2 (�2.8–3.2) 2–8 (2–12)
DC3 153.2–551.6 (153.2–645.3) 0.22–6.2 (�2.7–7.9) 0–8
DC4 172.2–531.4 (172.2–804.0) 0.22–5.2 (�2.0–5.29) 1–7
DC9 169.6–381.4 (169.6–609.7) 1.3–3.8 1–5
DC10 133.2–470.0 (133.2–583.7) �0.6–5.4 (�2.1–5.4) 1–9
DC12 165.2–501.7 0.5–5.6 (�2.0–7.1) 1–6
DC13 147.2–500.6 (147.2–733.9) �2.1–5.0 1–7
DC14 166.2–408.5 (166.2–612.6) �1.2–4.2 1–8

Class iii
DC7 137.1–812.0 (172.2–812.0) �2.0–5.0 (�2.0–6.6) 2–11
DC8 130.1–853.9 (263.2–853.9) �2.9–7.1 (�2.9–8.9) 1–11

All drugs in set 130.1–853.9 �2.9–8.9 (�6.8–8.93) 0–12 (0–14)
Drug-likeness (Lipinski Oral) >500 >5 0–10
Lead-likeness (Hann and Oprea)[77] 200–460 �4–4.2 0–9

[a] Full names of the disease categories are in Table 1.
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of 206 to 531 in MW, 0.8 to 5.0 of XlogP, 1 to 7 hydrogen
bond acceptors, and EIm from 0.010 to 0.056 kcal mol�1, EIh
from 0.14 to 0.75 kcal mol�1 NHA�1, and EIw from 0.002 to
0.018 kcal mol�1. Thus, these efficiency indices limits for EIm
and EIh are close to the above described rough estimate
guidance values of “drug-like” and “lead-like” values of
0.02 kcal mol�1, and 0.29 kcal mol�1 NHA�1, respectively,
and, together with their EIw values, are similar to those cal-
culated previously for drug compounds.[33,35] This organ-
based or disease-based drug design is a further develop-
ment from considering only oral bioavailability characteris-
tics to profile compounds.

Class (ii) DCs compounds can also be used to establish
disease-likeness ranges for descriptors. The values in
Table 2 and Table 3 show the limits of the regions that are
well clustered in DCs of class (ii). Disease-likeness thresholds
for DCs belonging to class (iii) are more broad and difficult
to define since they occupy vast regions of chemical space.

Some of the thresholds fit within previously determined
“drug-like” or “lead-like” thresholds, especially for those
compounds administered orally. However, there are also
specific regions which do not fall into the already described
filter thresholds, and these may be used for designing
drugs with a higher specificity. In particular, it may be the
case that known drug-likeness and lead-likeness thresholds
are too loose or unspecific relative to diseases and/or
organs. The disease/organ/target biomolecule – specific fil-
ters determined by improved characterization of physico-
chemical regions of disease-specific and organ-specific li-
gands could produce more focussed compound libraries. In
fact, it is also possible to combine different ranges of de-
scriptors, so lead-like, genito-urinary (DC5) disease-like com-

pounds would have MW between 206 to 460, XlogP be-
tween 0 and 4.2, 1 to 7 hydrogen bond acceptors, as well
as values of EIm, EIh, and EIw of 0.01 to 0.056 kcal mol�1,
0.14 to 0.75 kcal mol�1 NHA�1, and 0.002 to 0.018 kcal mol�1,
respectively. On the other hand, it is also observed that
drugs that are in more than one DC are generally still
within the overall drug region. This is a probable sign that
‘once a drug, always a drug’, in the sense that it is easier to
find new applications for known drugs than for a similar,
same binding affinity non-drug. We have previously ob-
served that this is indeed possible for new applications of
known drugs in the design of inhibitors for wild-type and
drug-resistant H5N1 avian influenza,[78] as well in the design
of new compounds for HIV-1 reverse transcriptase.[79]

From the efficiency indices in Table 3, it is observable
that some disease groups have a wider range of values,
such as drugs used in cancer therapy (DC8) and those used
on sensory organs (DC13), as compared to the more tightly
distributed systemic hormonal drugs (DC6), for example.
We can also compare the high values of EIh for all disease
category drugs with the rough threshold of 0.24 kcal mol�1

NHA�1 determined for protein-protein inhibitors.[80] In this
respect, it suggests that drug compounds may be charac-
terized by higher EIh values than both non-drugs, and pro-
tein-protein inhibitors. This may be due to the nature of
protein-protein inhibitors, specifically, their requirement of
displacing large protein binding partners.

Even if molecular size, hydrophobicity and number of hy-
drogen bond acceptors have been recognized to contrib-
ute to the drug-like character of compounds, we show here
that drugs group distinctly according to their target organs
or disease groups, providing locations for their positioning

Table 3. Thresholds that apply to disease categories and known drug-likeness and lead-likeness parameters for Efficiency Indices. Values in
parenthesis are for the cluster with extending molecules.

Disease categories [b] EIm EIh EIw

min–max min–max min–max

Class i
DC5 0.01–0.06 0.14–0.75 0.002–0.018
DC6 0.02–0.03 0.35–0.48 0.008–0.008 (0.006–0.008)
DC11 0.03–0.05 0.38–0.71 0.006–0.024

Class ii
DC1 0.01–0.05 0.14–0.67 0.001–0.018 (0.001–0.034)
DC2 0.02–0.05 0.29–0.75 0.003–0.034 (0.003–0.059)
DC3 0.01–0.06 (0.01–0.07) 0.15–0.75 (0.15–0.97) 0.001–0.051 (0.001–0.067)
DC4 0.01–0.05 0.22–0.75 (0.12–0.75) 0.001–0.028 (0.001–0.054)
DC9 0.01–0.04 0.20–0.68 0.004–0.028 (0.001–0.052)
DC10 0.01–0.07 (0.01–0.08) 0.15–0.94 (0.15–1.23) 0.001–0.089
DC12 0.01–0.05 0.29–0.75 (0.17–0.75) 0.001–0.018 (0.001–0.044)
DC13 0.01–0.05 (0.01–0.08) 0.12–0.87 (0.12–1.23) 0.001–0.044 (0.001–0.089)
DC14 0.01–0.06 0.21–0.83 0.002–0.035 (0.002–0.052)

Class iii
DC7 0.01–0.06 0.11–0.77 0.0004–0.025 (0.0004–0.054)
DC8 0.01–0.06 0.14–0.75 (0.09–0.90) 0.0004–0.025 (0.0004–0.075)

All drugs in set 0.01–0.08 0.09–1.23 0.0004–0.089

[a] Full names of the disease categories are in Table 1.
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in chemical space and subdivision according to mechanism
and mode of action, as well as profiling their efficiency indi-
ces to provide specific, localized analysis and description of
their structural properties.

3.6 Validation of the Results

The ranges of DG values for the validation set of drugs
(�3.55 to �14.59 kcal mol�1) and non-drugs (�3.46 to
�15.93 kcal mol�1) were the same as for the training set.
The validation set was subjected to the same treatment as
the training set. One validation set drug, cyclosporine A
(d525), appeared to be a strong outlier and was therefore
removed from further analysis. The validation set was
aligned with the described pattern above. The overlay of
training and validation sets can be seen in Figure 4. A gen-
eral picture emerges where the drug compounds are locat-
ed in the same region within the same quadrant as the
drug compounds in the training set. Comparison with the
score ranges defined by 90 % of the drug compounds in
the training set (Section 3.2) shows that 88 %, 93 %, and
90 % of the validation set drugs overlay within the ranges
of t[1] , t[2] , and t[3], respectively. The non-drugs are also in
broad similar regions as before, with the small change that
they are closer to the border regions with the drug mole-
cules (71 % of them pass Lipinski’s rule-of-five, see
Table S2). This may indicate progression of drug design
strategies over time in that more recent compounds have
been designed with a focus on being more drug-like, or on
improving pharmacokinetic properties.

Another proof of the utility of the model comes when
analyzing the disease-category location of the new set of
validation drugs. For most of the cases, they overlapped in

the regions defined previously. Examples can be seen in
Figures 5, where training and validation drug compounds
are superposed for alimentary tract and metabolism (DC1),
genito-urinary (DC5), and nervous system (DC10) catego-
ries. The overlap can be illustrated numerically by the per-
cent of the compounds from the drugs validation set that
fit to the range defined by the training set (Table 4). This in-
dicates that for the majority of the DCs more than 80 % of
the compounds fit into the ranges. Exceptions are those
DCs that have a small number of compounds in the train-
ing set, such as DC6 and DC11. Expectedly, the full set of
validation drugs nearly completely overlaps with the train-
ing set, also indicated by the ranges of MW, XlogP and
number of hydrogen bond acceptors.

3.7 Tests with No-Activity Non-Drugs

In the previous section, the validation of the PCA model
was carried out using a set of non-drugs of comparable
binding affinity to the set of drugs. This was in order to
provide a challenging background for the description of
the chemical properties of the molecules. An additional in-
dependent test was carried out using a set of compounds
with no known activity (none reported to date in the
ChEMBL database). Arguably, these can be considered
‘very’ non-drug compounds, and similar approaches have
been used before, using the Available Chemicals Directory
(ACD)[20] as well as Sigma Aldrich chemicals.[81] Figure 6 pro-
vides this comparison and shows that the no-activity non-
drugs form a distinct separate cluster, with some overlap-
ping compounds in quadrants tA and tC, but mostly in
a defined group of compounds in quadrant tA, located
past the group of drug compounds (i.e. , extending further
to the edges of the graph than the drug compounds do).
Only one of the no-activity non-drugs is present in quad-
rant tB, and none is present in quadrant tD. Comparison
with the score ranges defined by 90 % of the training set
drugs (Section 3.2) shows that 65 %, 17 %, and 61 % of no-
activity non-drugs are located outside of these ranges for
t[1] , t[2] , and t[3], respectively. At the same time, all but
one of the no-activity non-drugs pass Lipinski’s rule-of-five
(see Table S3). This clearly shows that although no-activity
non-drugs pass rule-of-five bioavailability-likeness criteria,
they are outside of the drug compounds’ chemical space.
This also serves to illustrate the proposal made in the pres-
ent work that combining different drug-likeness thresholds
or ranges (using more than one in sequential filters, for ex-
ample) are beneficial to more precisely characterizing
chemical libraries for drug-likeness.

An inspection of the chemical nature of these com-
pounds shows that they share some characteristics with
drug compounds, such as relatively small size, low number
of hydrogen bond acceptors, and some hydrophobicity, but
they are more extreme in these parameters than drug com-
pounds are. Hence, a balanced chemical nature (even more
refined than that of the rule-of-five) and a moderately well-Figure 4. The overlay of both training and validation sets.
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defined area of chemical space are able to describe some
of the properties of drug compounds and of compounds
that resemble them.

It is important to note that the present analysis of drug-
likeness is not based on binding affinity. In fact, in the
frame of the present publication, binding affinity was de-
signed to be of similar magnitude between drugs and non-
drugs in order to focus on other parameters, and indeed, it
did not contribute to the distribution of the data in the
PCA, i.e. , it did not describe any difference between the
variation of data between drugs and non-drugs. The cur-
rent work focuses on analysis of molecular descriptors and
all the interpretations are made in these terms. Pharmacoki-
netics and toxicity (themselves dependent on dose) are
also accompanying issues, of course, when dealing with
drug-likeness. These will determine the outcome of a com-
pound’s interactions with the many biomolecules, mem-
branes, and organs of an organism, from phenomena such
as absorption, metabolism, excretion, side-effects, and tox-
icity, which will depend on physical, chemical, and biologi-
cal interactions of compounds and their metabolites with
the many systems in which they will operate.[82]

Additionally, other methods exist for defining drug-like-
ness (for a review see the literature[20]), such as fragments
having different frequency in drugs as in non-drugs.[20,83,84]

One cannot overestimate the importance of good data
(itself also a time-changing entity since new data are
always forthcoming), as well as acknowledge the time-
changing nature and definition of DCs, drug-many target
and many drugs-one target interactions, and newly avail-
able synthetic and commercially available chemical space
that, together with drug-like chemical space, is still a very
small fraction of possible biologically relevant chemical
space.

4 Conclusions

Using principle component analysis we verified if it is possi-
ble to differentiate between drugs and non-drugs based on
their physicochemical descriptor space, as well as further
determine what are the set of ranges of physicochemical
descriptors for the specific disease groups and/or target
organs. We found that this was indeed possible by separat-
ing disease-categories into different classes according to
their spread. Based on this localization of physicochemical
descriptor and ligand efficiency space, disease-likeness or
organ-likeness threshold sets are defined in the vein of
‘drug-likeness’ and ‘lead-likeness’ threshold sets. The pro-
posed disease-specific approach provides guidelines to im-
prove profiling and filtering of compound libraries in order
to guide a chemical library toward certain molecular char-
acteristics of a certain set, such as those characteristics of
drug compounds. This will not make them drugs, of course,
since there are many mechanisms involved, not at least
target relevance and importance, toxicity (which is a dose-

Figure 5. Superposed training and validation drug compounds for
DC1, DC5 and DC10.
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dependant characteristic), side-effects, patient response,
FDA approval, commercial considerations such as patents
and expected revenues, among others, but it is an aid for
refining compound libraries. It can also have value in pre-
dicting compounds that may exhibit more than one phar-
macological activity, since if a compound has chemical
properties that fit those for more than one specific disease
category, there may be hints towards possible activity in
several of them. These threshold sets and mappings in-
clude not only orally-available drugs, but also drugs that
have a different route of administration. Such analysis is
evidently more reasonable in those disease categories that
have well-defined chemical space, which is challenging,
considering the time-moving nature of ‘drug-likeness’, as

well as pharmaceutical indications. However, the availability
of chemical data and target or network interactions can in-
creasingly provide guidance that is both broader than for
only orally-administered compounds, as well as more spe-
cific towards individual targets and anti-targets of action.

Analysis of the loadings plot was able to produce physi-
cochemically relevant groups of descriptors corresponding
to the terms of free energy of solvation. The model was va-
lidated by an external, independent set of both drugs and
non-drugs, which fell into the same established regions.
This concordance was also valid for most disease-group
categories, so that some specific DC prediction may be
possible based on descriptor and ligand efficiency thresh-
old sets and these ranges are presented.

Natural product drugs are seen to be both on the border
next to non-drugs, as well as in the drug-defined region.
This may be due to their relatively complex structural fea-
tures as compared to drugs, the latter having been simpli-
fied to facilitate chemical synthesis. Natural products can
also provide clues on how to design drugs, since they are
naturally evolved to produce a biological effect.

Compounds in a particular DC may have similar struc-
ture, and/or pharmacophore, but many do not. Important
information is provided by looking at diseases from both
the ligand point-of-view, i.e. , structural in addition to de-
scriptor characteristics, as well as from their mechanism of
action, target organ(s), and disease group(s). Some com-
pounds that have the same activity may share structural
characteristics (which may be uncovered by ligand-based
design) or interaction partners (uncovered by, e.g. , pharma-
cophore description), but many do not. The present paper
shows a way of describing compounds with similar action
without relying on their structure or binding functional
group distribution. That is, it can help when profiling com-

Table 4. Percent of drugs from the validation set within the range defined by the training set compounds for each criteria used in Tables 2
and 3. n : number of compounds; #H-accept. : number of hydrogen bond acceptors.

Disease categories [a] n EIm EIh EIw MW XlogP #H-accept.

Class i
DC5 9 100 100 89 78 89 78
DC6 2 0 0 0 0 50 10
DC11 3 33 33 100 100 100 100

Class ii
DC1 8 75 75 63 63 50 63 63 75 75 100
DC2 1 100 100 0 100 0 100 100 100 0
DC3 11 91 100 91 100 91 100 91 91 82 100 100
DC4 4 100 75 100 100 100 75 100 75 75 75
DC9 12 92 92 92 100 92 100 83 83
DC10 30 97 100 97 100 100 97 97 97 100 100
DC12 16 88 69 94 94 94 75 81 88 94
DC13 14 93 100 100 100 93 100 93 100 93 93
DC14 20 75 80 60 75 70 80 75 95

Class iii
DC7 0
DC8 4 100 100 100 100 100 75 75 100 100 75

All drugs in set 116 100 100 99 97 99 99 96 97

[a] Full names of the disease categories are in Table 1.

Figure 6. Location of no-activity non-drugs relative to the training
set drugs and non-drugs.
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pounds even when they do not share structural features.
Therefore, not all genito-urinary drugs need be steroids,
nor will all steroids be necessarily genito-urinary drugs. The
results from the analyzed model may aid in the design of
compounds and libraries better targeted to specific organs
or diseases, and eventually targets, based on information
obtained from physicochemical descriptor and ligand effi-
ciency index space.

Supporting Information

Tables include compounds for training set, validation set,
no-activity non-drugs, lists of descriptors used in PCA analy-
sis, and statistics for PCA models M1 and M2. Figures in-
clude the graphical representation of PCA analysis, and de-
tailed results and chemical structures of all disease catego-
ries. The complete matrix with molecular descriptors for all
compounds used in the PCA analysis is available upon re-
quest.
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