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’ INTRODUCTION

At the time this paper was written, acquired immune defi-
ciency syndrome (AIDS) caused by the human immunodefi-
ciency virus (HIV) was identified as the largest cause of mortality
for women at reproductive age worldwide.1 HIV is a character-
istic retrovirus that can quickly incorporate errors in its genetic
replication process.2 These errors provide mutations that allow
HIV to change its genetic material at a high rate when coupled to
a fast life cycle and natural selection.3 These features also compli-
cate the development of an effective vaccine.3 There have been
clinical successes in the treatment of HIV-1 by, chronologically,
the discovery of HIV-1 protease inhibitors, HIV-1 reverse tran-
scriptase (HIV-1 RT) inhibitors, HIV-1 entry inhibitors, and
HIV-1 integrase inhibitors.4,5 However, these viral component
enzymes are liable to mutate, have adapted, and continue to
adapt to inhibitors. A viable strategy may compose a treatment
combining inhibitors against each of these enzymes.

HIV-1 RT is a well-known therapeutic target for treating HIV-
1 infection and AIDS since there are no human equivalent
enzymes and it is essential in HIV-1 infection and disease pro-
gression. HIV-1 RT converts the viral RNA into viral DNA and
has a low replication fidelity (producing a high number of errors)
as it does not proofread the synthesized DNA.2 Nucleoside
and non-nucleoside reverse transcriptase inhibitors (NRTIs and
NNRTIs, respectively) are widely used in the clinic, in addition

to, or in combination with, HIV-1 protease inhibitors.6 However,
there are mutations that occur naturally during treatment with
some NNRTIs that render the protein resistant to them. One of
the most important is the Y181C mutation, where many ligands
that interacted with the former aromatic side chain are incapable
of binding in the same manner to the smaller cysteine residue.7

Computational methods can be developed to screen molecules
and design drug candidates against rapidly mutating enzymes for
experimental testing. Therefore, an approach using both wild-
type and Y181Cmutant drug-resistant reverse transcriptases was
employed for drug design in the present work.

Many drug candidate compounds fail due to problems of
efficacy and safety (toxicity and/or side effects).8 Off-target or
antitarget interactions may be the source of many of these side
effects or toxicity.9�12 Target molecules are those proteins or
nucleic acids to which binding is desired to cause a pharmaco-
logical effect. Off-targets are biomolecules that are not the princi-
pal target for the desired effect and as such may produce a collat-
eral effect, or side effect, which may be beneficial (for example,
therapeutic side effects that may be further developed or used in
the clinic) or not. Side effects may be harmful enough to be toxic
to cells, tissues, and organs. Antitargets are either off-targets that
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ABSTRACT: New hits against HIV-1 wild-type and Y181C
drug-resistant reverse transcriptases were predicted taking into
account the possibility of some of the known metabolism
interactions. In silico hits against a set of antitargets (i.e.,
proteins or nucleic acids that are off-targets from the desired
pharmaceutical target objective) are used to predict a simple,
visual measure of possible interactions for the ligands, which
helps to introduce early safety considerations into the design of
compounds before lead optimization. This combined approach
consists of consensus docking and scoring: cross-docking to a
group of wild-type and drug-resistant mutant proteins, ligand efficiency (also called binding efficiency) indices as new ranking
measures, pre- and postdocking filters, a set of antitargets and estimation, and minimization of atomic clashes. Diverse, small-
molecule compounds with new chemistry (such as a triazine core with aromatic side chains) as well as known drugs for different
applications (oxazepam, chlorthalidone) were highly ranked to the targets having binding interactions and functional group spatial
arrangements similar to those of known inhibitors, while being moderate to low binders to the antitargets. The results are discussed
on the basis of their relevance to medicinal and computational chemistry. Optimization of ligands to targets and off-targets or
antitargets is foreseen to be critical for compounds directed at several simultaneous sites.
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cause a strong enough reaction leading to toxicity or off-targets
which are desired to be avoided to tailor the biological behavior
of the compound (see cytochromes below). Compounds that
have the possibility to bind to targets, off-targets, and/or anti-
targets can be identified as likely to have more than one target
interaction and flagged as early as possible in the discovery stages
to modify those interactions.

In some cases, metabolic enzymes can be considered as
antitargets. Cytochromes P450 (CYP P450s) are a good choice
as antitargets since they are involved in the phase I metabolism of
foreign substances, generally through oxidations that are one of
the first chemical modifications of a molecule inside the blood-
stream and produce metabolites that are more polar and easier to
excrete.13,14 If a CYP enzyme is inhibited by a compound, then
other drugs that are administered at the same time may have a
different effect since the particular CYP enzyme being inhibited
by the first drug is no longer available for metabolism of the other
drug(s).15 A metabolic enzyme may convert a relatively safe
compound into a much more toxic metabolite, and this would be
another case where it could be treated as an antitarget. Caution
must be used if a compound is not transformed by any meta-
bolizing enzyme, because it might accumulate dangerously in the
organism over time and therefore cause severe side effects or it
might have very fast clearance times and difficulty reaching a
therapeutically important dose and window.

In some cases, a metabolic enzyme could be another ther-
apeutic target (desired off-target) for the compound in addition
to its designed target. A prodrug may be metabolized and lead to
a relatively safe and active drug compound that is required for a
particular treatment, such as with dacarbazine, an anticancer
drug.6 A possible way to increase the free concentration in plasma
of compounds may be to design inhibitors against the desired
target(s) that, at the same time, do not interact with CYP en-
zymes, which may, in turn, mean that lower doses can reach a
therapeutic effect. Inhibition of an antitarget may be desired, for
example, to free another drug that is bound to the antitarget and
boost the free levels of the latter drug in the bloodstream. In
addition to thermodynamic properties, the kinetics of binding
will also dictate the speed of inhibitor release and thus the free
concentration in blood of a compound. A well-known case is the
HIV-1 protease inhibitor ritonavir, which also inhibits cyto-
chromes 2d6 and 3a and enables other HIV antivirals to remain
not bound to these enzymes and thus remain unmetabolized for
a longer period of time.16 Therefore, a fine-tuned metabolic en-
zyme and target receptor inhibition is required, one that is flexible
and adaptable to different design purposes, yet sensitive and
reliable.

Good choices for antitargets are also the enzymes involved
in phase II metabolism where the metabolite is conjugated to
hydrophilic compounds, such as sugar or glucuronic acid. In the
case of the sulfotransferases (SULTs), a sulfonyl group is
attached to hydroxyl and amino groups on the compound to
form sulfates and sulfamate conjugates, again making them easier
to excrete, as well as less able to interfere with host proteins,
receptors, and DNA. Other good choices for antitargets are drug
transporters of phase III metabolism that can efflux drugs and
proteins that create resistance to medications.15 Foreign sub-
stances are recognized by the pregnane X receptor (PXR), which
also up-regulates enzymes (including CYP P450s, SULTs, and
drug transporters) that will transform the substance or excrete
it.15 Studies on the structure of PXR show a mostly hydrophobic
binding site, with the ability to bind to a wide variety of different

ligands and without large conformational changes between apo
and holo forms of the receptor.17 Virtual screening and docking
can make good use of this character, since the interactions
between predicted binding ligands and proteins in the binding
site may be controlled with one protein crystal structure. It is
important to note that frequent sites of toxicity problems, the
liver and small intestines, are the organs where most of these
enzymes, receptors, and transporters are mainly located. The side
effect and toxicity profiling of compounds by predicting the
antitarget interactions of ligands may help discover similar side
effects and therapeutic targets between drugs18 and drug candi-
dates, as well as find new targets for compounds.19 Network
pharmacology, or “polypharmacology”, advances the theory of
designing ligands that can inhibit more than one protein and
carry out the desirable (sometimes even required) ligand opti-
mization against several targets.20,21 Drug repurposing, or finding
new diseases that a drug or a drug candidate can aid with, is also
increasing in importance.8,22 In addition, there can be differences
between animal models of disease and toxicity and those of the
human organism, and sometimes there are no human orthologue
proteins in other mammals, such as for sulfotransferase 1A3.23

A major challenge to be solved for these aims is to achieve
selectivity against several targets, and for the approach to be
successful, it is critical that the designed ligands have the exact
level of promiscuity desired, binding to several protein targets but
at the same time avoiding unwanted targets to not create over-
promiscuous ligands.

In the present work, a novel drug design strategy has been
developed through in silico screening on several wild-type and
Y181C drug-resistant HIV-1 RT protein structures, using ligand
efficiency (also called binding efficiency) indices and hydrogen
bonding to improve the results of the scoring and ranking of
molecules predicted to bind to more than one protein crystal
structure, sequence, and hydration state to account for multiple
mutations and conformations. In addition, a set of antitargets is
collected (battery), and the results of the predicted binding of
three CYP structures, one SULT structure, and one PXR struc-
ture are used to roughly and visually estimate metabolic interac-
tions for virtual drug design. This combination is a new approach
to treat drug design and metabolism together in the early stages
of drug discovery and may aid in designing compounds with a
desired level of interaction with targets and antitargets and in the
first steps to establish an in silico metabolic profile. The choice of
off-targets can define the off-battery set purpose. Biological inter-
actions still require experimental confirmation, and the proce-
dure does not distinguish between side effects and toxicity.

’METHODS

Proteins. The set (or “battery”) of protein targets included
the structures of wild-type HIV-1 reverse transcriptase, 2BE2
and 1S9E from the Protein Data Bank (PDB)24 (see Table 1).

Table 1. Target Protein Crystal Structures for HIV-1 Reverse
Transcriptase

protein type PDB ID resolution (Å)

wild 2BE2 2.43

1S9E 2.6

drug-resistant mutant 1JLA 2.5

2IC3 3.0
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They have tyrosine 181 in the “up” conformation, which is the
most common in the cocomplexes between this protein and
known inhibitors.7 Structures of the drug-resistant Y181C mu-
tant reverse transcriptases, 1JLA and 2IC3 from the PDB, were
also employed. Together they represent at least two of the
different clusters of HIV-1 RT structures recently observed.25

The use of a set of protein structures can provide the benefit of
exploring a larger region of conformational space, as well as
exploring chemical space to identify compounds that would bind
well to the protein in a variety of plausible conformations and/or
mutations, as well as hydration states.26�28

The antitarget set contained the human sulfotransferase 1A3,
pregnane X receptor, and three cytochrome P450 enzymes.
Table 2 shows these antitargets, their structures, and their co-
crystallized ligands.
Maestro29 was used to place hydrogen atoms on protein

structures. The Protein Preparation Wizard30 was used to assign
ionic states of residues in the protein, allocate polar hydrogens,
and partially minimize the protein structures while restraining
the protein backbone to converge to a root means square devia-
tion (rmsd) of 0.3 Å using the OPLS2005 force field (Impref
minimization with default options). Water molecules were re-
moved from most of the structures since they did not involve
extensive interactions in the binding site, except water molecule
HOHA1013 in structure 2BE2. For the latter, docking runs were
performed both with and without water molecule HOH A1013
in the binding site, and the lowest energy ligand binding pose
was kept.
Ligand Libraries. To compute receiver-operator characteris-

tics curves (ROCs; as false-positive rate vs true-positive rate), as
well as their area under the curve (AUC), 60 known active and
potent ligands downloaded from the ChEMBL database of
biochemical assays31 were docked (positive controls), in addition
to a test subset of 1140 randomly picked compounds (no mole-
cular property filtering) from the ZINC database32 to act as
decoys (negative controls), as well as a separate test with the
Schr€odinger collection of druglike ligand decoys (average molar
mass (MW) of 400 g/mol, negative controls),33 since they have
the closest molecular properties to those of the known actives
and are negative controls with which to measure the ability of the
proposed procedure to recover known inhibitors. Decoys are
presumed inactive molecules that have molecular properties
close to those of active compounds to provide “difficult” test
cases for docking procedures to recover the true actives from a
background of similar compounds. The ROC and AUC values
were calculated using the Python module CROC.34

For HIV-1 RT, the known and in-clinical-use drugs efavirenz,
etravirine, and nevirapine, as well as the known inhibitor rilpivirine,
were employed as reference compounds. The National Cancer
Institute’s diverse set of ligands,35 a second set of ZINC ligands

comprising the full ZINC database collection of commercially
available compounds (ca. 7 million compounds),32 and the struc-
tures of known and in-use drugs obtained from the DrugBank
database36 completed the sources for the library. The large ZINC
library was then treated through virtual prescreening, originally
prepared for RAC1 screening (currently unpublished), but also
used in avian influenza drug design.37 This was done by removing
molecules with undesirable predicted solubility, predicted toxic
and reactive groups (including α,β-unsaturated ketones7), and
more than six rings, but keeping those with rotatable bonds
between 5 and 12, polar surface area between 25 and 180 Å2,
molar mass between 300 and 650 g/mol, log P between �3 and
+5, and up to seven atoms in any given ring, as well as less than six
fused rings, using Instant JChem.38 In the resulting collection of
ca. 70 000 compounds (containing ca. 65 000 ZINC compounds),
hydrogens were assigned in an ionic state corresponding to a pH
close to 7.0 with LigPrep, and then employed for docking against
the protein structures to find interesting hits.
Target and Antitarget Threshold Rules. A slightly different

procedure was followed for the selection of target and antitarget
hits. This was done by design to have extra confidence in that the
target hits were predicted by consensus between docking pro-
grams/scoring functions (prospective part), while not requiring
consensus between programs for antitarget hits, since in the latter
case we would be interested if either of the programs/scoring
functions detected an interaction (safety part).
Targets. A procedure was developed where compounds were

docked and ranked to the protein targets with both Glide
(version 55110)40�43 and Autodock (version 4).44 For the tar-
gets, only those compounds that had deep interaction scores
(negative) according to both programs, and lower (deeper) than
those obtained with these programs for known inhibitors and
drugs (see nevirapine), were considered for the top ranks. This
can be considered an extra confidence procedure to minimize
false positives for the targets, requiring correspondence between
different programs and scoring functions. Consensus between
scoring procedures has been documented to improve the per-
formance over experimental high-throughput screening, increase
the hit rates of active compounds, and decrease the false-positive
rate as compared to the use of a single scoring function.45,46

Cross-docking was carried out between the native (cognate)
ligands of each of the wild-type protein structures into the other,
as well as between the native ligands of the mutant protein struc-
tures into the other.
Antitargets. At the same time, the compounds were docked

and ranked against each of the antitarget proteins, and the
interaction of each compound with each protein was recorded.
The procedure for antitargets is designed for extra safety, in that
any strong interaction (low score, deeply negative) between a
ligand and protein by either docking program/scoring function is
recorded to reduce false negatives for the antitargets. For each
antitarget, the docked ligand molecule would receive a new
numerical score of (i) 0 if it had a score higher (less negative)
than 0.5 kcal/mol from the interaction score recorded by the
cocomplexed native ligand in the protein crystal structure to
indicate a lack of strong binding, (ii) 1/2 if it was within 0.5 kcal/
mol of the score recorded by the cocomplexed ligand (i.e., no
more than 0.5 kcal/mol above or below the score recorded by the
cocomplexed native ligand in the protein crystal structure) to
indicate a border case of binding, or (iii) 1 if its score was deeper
(more negative) than 0.5 kcal/mol from the score recorded by
the cocomplexed ligand to indicate a strong binding interaction.

Table 2. Antitarget Protein Crystal Structures

name (abbreviation)

PDB

ID

resolution

(Å)

ligand or

inhibitor

in complex

sulfotransferase 1A3 (SULT) 2A3R 2.60 L-dopamine

pregnane X receptor (PXR) 1M13 2.15 hyperforin

cytochrome P450 2a6 (CYP 2a6) 1Z10 1.90 coumarin

cytochrome P450 2c9 (CYP 2c9) 1OG5 2.55 (S)-warfarin

cytochrome P450 3a4 (CYP 3a4) 1TQN 2.05
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These new scores provide a rough estimate of the likely hits
against the several antitargets, and they are coded by color ac-
cording to their value (0, 0.5, or 1). These new color codes are
used to generate a visual representation of interactions as shown
in Figures 6 and 7. These new scores also enable an interaction
array to be built. A hit string can be constructed by adding the
values of the individual interactions against the set of antitargets
for a ligand. A combined hit string, also called a combined array
sum, is the sum of all interactions with all antitarget proteins for
both docking programs for the same ligand. An individual hit
string, or individual array sum, is the sum of all interactions with
all proteins for one ligand using one docking program/scoring
function. That is, in the present method, with the present set of
antitargets, the maximum combined hit string or combined array
sum would be 10, and the maximum individual hit string or in-
dividual array sum would be 5.
Antitarget Validation. Extra sets of known active compounds

(positive controls, obtained through literature searches and
the ChEMBL database), as well as known nonbinding com-
pounds (inactives obtained through literature searches), and the
Schr€odinger ligand decoy set (presumed inactives that have
molecular properties similar to those of active compounds, e.g.,
average MW of 400 g/mol) were spiked into the ligand data
set and docked into the set of antitargets to test if the proce-
dure would recover them among the top ranks. These com-
pounds for SULT, PXR, CYP 2a6, CYP 2c9, and CYP 3a4,
respectively, were, for the actives, (SULT) ChapmanE-1,47 (PXR)
A-792611,48 (CYP 2a6) 8-methoxypsoralen (methoxsalen),49

(CYP 2c9) sulfaphenazole,50 and (CYP 3a4) nephazodone51

and, for the inactives, (SULT) 2,2-dimethyl-3-vinylcyclohexane,52

(PXR) VelaparthiU-10,53 (CYP 2a6) ε-caprolactone,54 (CYP
2c9) RaoS-31,55 and (CYP 3a4) felbamate.56 In addition, active
and potent compounds from the ChEMBL bioassay database
included CHEMBL IDs 167055 and 169033 for SULT, 456237,
457977, 59030, and 606702 for PXR, 178938, 179621, 179669,
179704, 214859, 214990, 36099, 361153, 368883, 369285, and
386124 for CYP 2a6, 1109, 455975, 455976, 456181, 456432,
457087, 458566, 458567, 463577, 463976, 464595, and 514730
for CYP 2c9, and 1089957, 270271, 271580, 507731, 573665,
583954, 75, and 98745 for CYP 3a4.31

Docking Schemes. A hierarchical scheme was employed in
Glide using the high-throughput virtual screening (HTVS)
scoring function to make a first selection based on flexible ligand,
rigid protein docking, retaining 10% of the top compounds (one
pose per compound). Then the standard precision (SP) scoring
function made the next selection based on flexible ligand, rigid
protein docking, retaining 10% of the top compounds (one pose
per compound), and finally the extra precision (XP) scoring
function docked ligands flexibly and ranked all top compounds,
retaining one pose per compound. Conformations of amide
bonds were allowed to be varied for all stages penalizing non-
planar solutions. The protein atom size (van der Waals radii) was
scaled by a factor of 0.8 for those atoms that have partial atomic
charge smaller than 0.15. Scaling the van der Waals radii of
protein atoms during docking is a standard procedure in the
Virtual Screening Workflow,40 which aims at reducing hard
clashes between ligand and protein atoms. Many proteins such
as PXR remain in a similar conformation in both apo and holo
states, but large flexibility in the protein targets may not be taken
into account. Since PXR is reported to bind to several ligands
without major conformational rearrangement,17 we used the holo
structure of PXR as described in structure 1M13. Postdocking

minimizations were carried out using the default options of the
OPLS2001 force field for a maximum of 100 conjugate gradient
steps with a distance-dependent dielectric model with a setting of
2.0 (where the effective dielectric constant is 2.0 times the dis-
tance between the interacting pair of atoms). The scoring pro-
cedure penalizes ligand binding poses where polar groups do not
have a binding partner in the protein binding site as their high
desolvation energy would disfavor the ligand’s binding energy.
The settings used for the genetic algorithm in Autodock were

as follows: number of individuals in population, 250; maximum
number of energy evaluations, 2 million; maximum number of
generations, 27 000; number of top individuals to survive to next
generation, 1; number of genetic algorithm runs, 100. In addition,
a ranked cluster analysis was performed on each docking calcula-
tion (100 runs of each ligand against each protein) to determine
the cluster with the best energy and population of result poses.
To improve the reliability of the docking results, they were

verified, including checking that (a) the ligand is in a correct site,
(b) the ligand is not protruding significantly from the binding
site, (c) the binding mode is plausible, and (d) the predicted
binding pose has the identified privileged interactions and inter-
action partners, and proper consideration of (e) tautomers,57 and
(f) possible ionization and hydration states26�28 of the ligand and
protein, among other checks. If carefully conducted and analyzed
using control compounds, consensus docking results can be valu-
able to identify binding geometries and interaction partners. The
results were inspected visually for the top-ranked compounds,
and structures were judged on the basis of their structural and
chemical soundness, as well as their consistency between pro-
grams. Compounds that were predicted to score deeply to both
the wild-type and drug-resistant reverse transcriptases, and by
consensus between both docking programs, were filtered to obtain
the top compounds. The consensus scores were calculated as

ΔGwild type
consensus ¼ ðΔG2BE2

XPGlideScore þ ΔG1S9E
XPGlideScore

þ ΔG2BE2
Autodock þ ΔG1S9E

AutodockÞ=4

ΔGmutant
consensus ¼ ðΔG1JLA

XPGlideScore þ ΔG2IC3
XPGlideScore

þ ΔG1JLA
Autodock þ ΔG2IC3

AutodockÞ=4

ΔGtotal
consensus ¼ ðΔGwild type

consensus þ ΔGmutant
consensusÞ=2

Compounds with scores deeper than the threshold were then
reranked on the basis of their interactions with key protein
binding partners, such as hydrogen bonds with protein backbone
atoms, that can be less prone to mutational variation and con-
formational variation. The latter may help identify those com-
pounds less sensitive to mutations that could make the protein
resistant to a drug. The electronegative heteroatoms with at least
one free pair of electrons in thiophenes, furans, NH2-phenyl, and
X-phenyl (X = F, Cl, Br) were not counted as hydrogen bond
acceptors in the hydrogen bond-based ranking since they are
weak acceptors. Additional characterization was also provided by
several ligand efficiency indices.
Chemical structure searches were performed postdocking for

the highest ranked hits using SciFinder.58 The compounds with
an exact match were analyzed.
Molecular Physicochemical Properties and Efficiency In-

dices.Marvin Beans59 were used to calculate the molecular sur-
face area (MSA), polar surface area (PSA), MW, rotatable bonds,
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Wiener index (W, a topological intramolecular connectivity
index describing the summation of the edges in the shortest
paths between all the heavy atoms), hydrogen bond acceptor
atom count, hydrogen bond donor atom count, and logarithm of
the partition coefficient between octanol and water (log P) of
compounds. Some of these properties were used in addition to
the number of carbons (NoC) for calculating ligand efficiency
indices as ΔGconsensus

total /NF, where ΔGconsensus
total is the consensus,

combined binding score between ligand and all target proteins
and for both docking programs and NF is the normalization
factor, such as MW, W, PSA, etc. OpenBabel60 was used for
calculating Tanimoto similarity coefficients.
The described methodological steps were used sequentially as

indicated in the schematic representation of the workflow in
Figure 1. The workflow shows the starting points in terms of data
sources, construction, validation, and analysis of protein bat-
teries, as well as the stops for expert checks between those steps.
Many of the procedures in Figure 1 are run manually, and

any fully automated workflow would need to ensure that all the
checks in the method workflow, such as threshold setting, bind-
ing mode evaluation, and ligand structure comparison, are ade-
quately included. Many of the programs run in Figure 1 are not

free to redistribute, but the programs to control them written in-
house (such as launching the docking programs and postproces-
sing the ligand files) are available by request from the authors,
and input files are shown in Supporting Information files S1
and S2.

’RESULTS AND DISCUSSION

ROCs and AUCs. Figure 2 shows the ROC curves for the
consensus screening, as well as for the individual programs/
scoring functions, and a random control (diagonal line). The area
under the curves was also calculated for each procedure, resulting
in 0.91 for Glide, 0.62 for Autodock, and 0.87 for the consensus.
They also had high enrichment factors at 5% of the database
screened of 75, 35, and 50, respectively. These high values for the
consensus procedure indicate early retrieval of known and potent
inhibitors and usefulness in screening and classifying actives and
decoys in the top ranks.
From Figure 2, it can be seen that Glide performed better than

Autodock when using ChEMBL actives plus the small subset of
random ZINC compounds as decoys. This affects the consensus
procedure, since it degrades the quality of retrieval of actives.
Consensus scoring may decrease the performance of an indivi-
dual method if one of the methods is markedly worse than the
other. However, consensus scoring is a hedging method that
allows diminishing the risk of false positives and false negatives
that could arise when only one docking program/scoring func-
tion is considered. When using the ChEMBL actives plus the
Schr€odinger ligand decoy set, Glide again performs better than
Autodock, but here the consensus procedure performs better
than either of the methods on their own.
Cross-docking between native ligands and related protein

structures showed reasonable agreement: The cognate ligand
for wild-type structure 2BE2 (HET-ID R22) docked into the
wild-type structure 1S9E gave a heavy atom rmsd of 1.43 Å (XP
GlideScore, �12.24 kcal/mol; Autodock4, �11.07 kcal/mol).
The cognate ligand for wild-type structure 1S9E (HET-ID ADB)
docked into the wild-type structure 2BE2 without a tightly bound
watermolecule gave an rmsd of 1.9 Å (XPGlideScore,�11.11 kcal/
mol; Autodock4, �9.64 kcal/mol), while that docked into the

Figure 1. Method workflow.

Figure 2. ROCs for screening of known actives and decoys against HIV-
RT compared to a random control (diagonal line).
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wild-type structure 2BE2 including the tightly bound watermole-
cule gave an rmsd of 1.34 Å (XP GlideScore, �10.66 kcal/mol;
Autodock4, �9.36 kcal/mol), which indicates that the water
molecule produces binding poses with closer resemblance to the
original cognate structure. The cognate ligand for mutant struc-
ture 1JLA (HET-ID TNK) docked into the structure of mutant
protein 2IC3 gave an rmsd of 0.61Å (XPGlideScore,�13.09 kcal/
mol; Autodock4, �8.73 kcal/mol). The cognate ligand for mu-
tant structure 2IC3 (HET-ID HBY) docked into the structure of
mutant protein 1JLA gave an rmsd of 1.56 Å (XP GlideScore,
�12.63 kcal/mol; Autodock4,�7.99 kcal/mol). For the mutant
proteins, XP GlideScore appeared to score the cross-docked
ligands deeper than Autodock4, showing a better agreement
between scoring procedures for closely related proteins. All
cross-docked ligands showed good docking poses with a smaller
than 2 Å rmsd from the original X-ray pose.
Profiled Ligands. Table 3 shows the top-ranked ligands, as

well as known drugs used against HIV-1 RT, in addition to
known drugs used for different diseases. The new compounds are
ranked according to the number of hydrogen bonds formed be-
tween the ligand and the protein main chain atoms (only those
compounds that made two hydrogen bonds to the main chain of
the protein—i.e., two asterisks—in most of the protein struc-
tures were selected). Compounds are further ranked according
to the ligand efficiency index of predicted binding score/
polar surface area (ΔGconsensus

total /PSA). ΔGconsensus
total /NHA and

ΔGconsensus
total /MW are also presented in Table 3. The other four

calculated ligand efficiencies are shown in Table S1 in the Sup-
porting Information. The total change in apolar solvent-acces-
sible surface area upon binding (ΔSASAapolar) is also presented
in Table 3 as an approximation to the total change in apolar
molecular surface area, which has been shown to be correlated
with the binding free energy for a database of thermodynamic
measurements,61 in addition to the percentage of the total apolar
surface area (%ΔSASAapolar) as a measure of the fit between the
ligand and protein binding site.
The consensus scoring results for known drugs suggest a broad

agreement with experimental phenomena; etravirine and efavir-
enz were predicted to have a probability to bind to both wild-type
andmutant proteins.Most of the compounds included in Table 3
have at least two hydrogen bonds to the protein main chain in all
predicted protein�ligand structures. The predicted binding
score of each compound was computed against the wild-type
and drug-resistant protein targets (four proteins, five structures),
as well as against the antitargets (five proteins). This gives the
predicted interactions between each ligand with 10 protein struc-
tures in total, each calculation verified by both docking programs,
to design drug candidateswhichmay then be tested experimentally.
The number of hydrogen bonds to the protein main chain

atoms (both to wild-type and drug-resistant mutant proteins) is
used to rank compounds in Table 3 for five reasons: (1) they have
been suggested in the context of kinase inhibitors to give an
indication of how reliable the docking calculationmay be to avoid
false positives;62 (2) protein main chain atoms are frequently
easier to assign to electron density maps from X-ray crystal struc-
tures, as well as having lower B factors, than side chain atoms, and
therefore, their positioning may be more reliable than that of side
chain atoms; (3) protein side chain atoms are more mobile and
have increased conformational variability compared to main
chain atoms, so counting hydrogen bonds to the main chain
may detect interactions that persist for longer periods of time;
(4) interactions between the ligand and the protein main chain

atoms may leave residual mobility in the protein that could
contribute favorably to the entropic part of the binding energy;63

(5) protein main chain atoms are much less frequently changed
due to residuemutations than side chain atoms, so accounting for
them to have a larger weight than side chain hydrogen bond
interactions can help discover and design compounds with less
exposure to the frequent viral protein mutations.
The free energy of binding of a ligand can be normalized per

unit of measure thanks to the recently introduced ligand effi-
ciency (or binding efficiency) indices.64�70 This normalization
effect is important as it can remove size effects and therefore
optimize compounds on the basis of their effective binding and
pharmacokinetic related properties. Our previous results using
ligand efficiencies include the improvement of the correlation
between calculated and experimental values of drug�protein
binding efficiencies,70 as well as separating drugs from nondrug
compounds.71 Small-molecule compounds able to disrupt (and
therefore inhibit) large surface protein�protein interactions
were also found to be characterized by their ligand efficiency,
specifically a value of ΔG/NHA lower than �0.24 kcal/
(mol 3NHA).

68 This is reasonable if we consider that a typical
submicromolar potent drug compound that has 50 or fewer
heavy atoms would have aΔG/NHA of around�0.2 kcal/(mol 3
NHA) or lower. Assuming a submicromolar potency compound
with amolar mass lower than 500 g/mol (as in one of the Lipinski
rule thresholds72) would imply an efficiency index ΔG/MW
lower than�0.02 (kcal 3 g)/mol2. Alternatively, considering values
of NHA = 35 and MW = 350 g/mol for a lead-like compound,
values of ΔG/NHA and ΔG/MW of around �0.29 kcal/
(mol 3NHA) and �0.029 (kcal 3 g)/mol2, respectively, would
be reasonably expected. A good prospective candidate com-
pound would be required to have efficiency indices similar to
or lower than these described values. A normalized comparative
measure (therefore, a whole molecule property) such as a ligand
efficiency index can help to better characterize a ligand than only
a ΔG score based on atom type or functional group contribu-
tions, or only on its molecular properties alone, since it has been
suggested that functional group contributions to protein�ligand
binding are not additive.74 The ligand efficiency measure ofΔG/
PSA (PSA is the polar surface area of the compound, Å2) can
combine the pharmacodynamic measure of the binding affinity
with the pharmacokineticmeasure of permeability or distribution
estimated by the polar surface area. Using the data of different
drugs with several protein targets from our previous study,70

correlations between experimentalΔG/PSA and GlideXP-calcu-
lated ΔG/PSA with an R2 = 0.794 (n = 26) and between
experimental ΔG/PSA and Autodock-calculated ΔG/PSA with
an R2 = 0.811 (n = 26) are achieved. Considering a submicro-
molar inhibitor with a PSA of ca. 140 Å2 (suggested as a top limit
for cell permeability),74 we would expect aΔG/PSA threshold of
ca.�0.07 kcal/(mol 3Å

2), and designed compounds would need to
have a ΔG/PSA value similar to or lower than this threshold. All
of our proposed compounds in Table 3 meet this requirement.
There is a wide molecular diversity in the predicted binders in

Table 3 that is reflected in their low Tanimoto similarity co-
efficients that have a mean value of 0.24 and a median value of
0.21. Furthermore, all of the small-molecule compounds in
Table 3 pass Lipinksi’s rule-of-five,72 which may give an indica-
tion of them having good bioavailability, in addition to the com-
pounds having less than 10 rotatable bonds and polar sur-
face areas smaller than 140 Å2 (with the exception of hit 6,
PSA = 144.86 Å2). Many of the known inhibitors have moderate
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Table 3. HIV-1 Reverse Transcriptase Profiled Ligands against Wild-Type and Drug-Resistant Mutant Strainsa
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Table 3. Continued

aΔG w.t. = consensus binding score to wild-type protein (kcal/mol), ΔGmut. = consensus binding score to mutant drug-resistant protein (kcal/mol),
ΔG/PSA = combined predicted binding score divided by the polar surface area (kcal/(mol 3Å

2)), ΔG/NHA = combined predicted binding score
divided by the number of heavy atoms (kcal/(mol 3NHA)),ΔG/MW= combined predicted binding score divided by the molar mass ((kcal 3 g)/mol2),
ΔSASAapolar = change in the total buried apolar solvent-accessible surface area upon binding (Å2), and %ΔSASAapolar = change in the total buried
apolar solvent-accessible surface area upon binding divided by the total apolar solvent-accessible surface area and expressed as a percentage. The name or
ID of each compound is followed by asterisks indicating the number of hydrogen bonds between the ligand and protein main chain atoms. The order of
asterisks is for wild-type structures 1S9E and 2BE2 (and in parentheses for drug-resistant 2IC3 and 1JLA).
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ΔG/PSA values within limits of �0.04 to �0.62 kcal/(mol 3Å
2)

determined for a previously studied set of different drugs and
protein targets with known activity and crystal structure.70 By
improving ΔG/PSA values (either by increasing the binding
affinity and/or by decreasing the polar surface area, i.e., decreas-
ing the overall size and/or decreasing the number of polar func-
tional groups in the molecule), there may be scope for improve-
ment of HIV-1 RT inhibitors. Additional ligand efficiency indices
are shown in Table S1 in the Supporting Information. Com-
pounds with low efficiency index values may benefit from being
easier to develop,75 as well as having possibly less side effects.76

Fragment-based drug design and ligand efficiency make likely the
adoption of smaller and less complex compounds. This may
indeed be desirable for further optimization and chemical modi-
fication of compounds, though conceivably, very small compounds
can be more promiscuous and bind to a variety of targets,77 as

well as be more likely to cross the blood�brain barrier and have
central nervous system effects that may or may not be a desired
feature of a compound. All of the proposed compounds have
predicted ΔG/MW, ΔG/NHA, ΔG/W, ΔG/P, and ΔG/NoC
values that are within the limits from previous studies.37,67�70

In particular, their ΔG/NHA values are lower than the iden-
tified �0.24 kcal/(mol 3NHA) threshold that can define small-
molecule inhibitors for protein�protein interactions.68 Their
predicted ΔG/NHA, ΔG/MW, and ΔG/PSA values are also
deeper than our defined thresholds for bioavailable, cell-permeable,
small-molecule, lead-like submicromolar compounds of�0.29 kcal/
(mol 3NHA),�0.029 (kcal 3 g)/mol2, and�0.07 kcal/(mol 3Å

2),
respectively. Their predicted ΔG/W values are also between the
limits of�0.001 and�0.07 kcal/mol determined in our previous
studies on drug�protein systems.37,67,69,70 Their ΔSASAapolar
values (using a rough estimation of ΔCSA ≈ 0.75(ΔSASA))61

are also within the limits determined by Olsson et al. for a num-
ber of thermodynamically measured systems,61 and their %ΔSA-
SAapolar values show a high degree of burying of the apolar
surfaces of both the protein and ligand, indicating a good fit.
The binding site of HIV-1 RT is nearly completely buried and

enclosed within the protein structure. Efavirenz makes extensive
hydrophobic interactions, as well as aromatic interactions, and
donates and receives a hydrogen bond, respectively, to the
backbone CdO and NH groups of Lys 101. It is interesting to
note the chemical similarity of the known drugs oxazepam and
chlorthalidone to efavirenz. They also have the same binding
mode and similar interactions with HIV-1 RT compared to
efavirenz. These include two fused rings, one aromatic with a
chlorine substitution in the same position, an amide or urethane
group on the top part of the second ring (similar to a quinolin-2-
one), and a hydrophobic group on the lower part of the rings in a
similar spatial arrangement. The binding interactions of efavirenz
and oxazepam are shown in Figure 3. The binding interactions of
chlorthalidone are similar, the ligands having the same orienta-
tion seen in Table 3. This may indicate that these widely used
drugs may also bind to HIV-1 RT similarly to the approved drug
efavirenz; that is, they may compose a pharmacophore with the
same groups and with a similar distribution in space for impor-
tant chemical factors responsible for interaction.

Figure 3. Binding site interactions between HIV-1 RT and (a) docked
efavirenz and (b) docked oxazepam. Magenta lines are hydrogen bonds
to main chain atoms, green lines are aromatic�aromatic interactions,
green residues are hydrophobic contacts, cyan residues are polar
contacts, blue residues are positively charged contacts, and red residues
are negatively charged contacts. The residue font size indicates the
distance (larger letters are closer).

Figure 4. Original X-ray native (cognate) ligand (in yellow), docked
binding poses for the known drug etravirine (in blue) and ligand 10 (in
cyan), and docked native (cognate ligand, in magenta) pose (rmsd =
0.83 Å) in the binding site of HIV-1 reverse transcriptase (1S9E, in
white). Hydrogen bonds to themain chain atoms are indicated by yellow
dashes. Hydrogens are not shown for the protein. Polar hydrogens are
shown for the ligands.
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Table 4. Docking to Antitargetsa

antitarget + ligand

GlideScore

(kcal/mol)

Autodock binding

free energy (kcal/mol) ligand

GlideScore

(kcal/mol)

Autodock binding

free energy (kcal/mol)

SULT L-dopamine

(cocrystal)

�6.3 �7.5

ChapmanE1 �7.1 �7.5 Schrod_484875 >0 +6.7

CHEMBL167055 �7.0 �7.3 Schrod_510180 >0 �4.4

CHEMBL169033 �7.5 �6.3 Schrod_558540 +3.9 �2.0

Schrod_452534 �3.7 �5.4 Schrod_621157 >0 �2.4

Schrod_480983 >0 �1.4 Schrod_721049 >0 �3.1

Schrod_481019 >0 �6.7

PXR hyperforin (cocrystal) �7.7 �12.5

A-792611 �16.0 �17.6 Schrod_481019 >0 �7.4

CHEMBL456237 �9.9 �9.1 Schrod_484875 �7.3 �10.8

CHEMBL457977 �10.0 �8.5 Schrod_510180 >0 �5.1

CHEMBL59030 �12.9 �12.6 Schrod_558540 >0 �2.5

CHEMBL606702 �12.1 �12.7 Schrod_621157 >0 �4.9

Schrod_452534 �2.7 �5.4 Schrod_721049 >0 �10.0

Schrod_480983 >0 �6.0

CYP 2a6 coumarin (cocrystal) �7.6 �6.8

methoxsalen �8.0 �8.4 CHEMBL369285 �7.1 �6.7

CHEMBL178938 �7.2 �7.1 CHEMBL386124 �9.7 �8.9

CHEMBL179621 �9.9 �8.7 Schrod_452534 >0 +141.4

CHEMBL179669 �9.9 �8.7 Schrod_480983 >0 +280.2

CHEMBL179704 �9.9 �8.7 Schrod_481019 >0 +171.2

CHEMBL214859 �7.9 �7.8 Schrod_484875 >0 +196.5

CHEMBL214990 �9.2 �8.3 Schrod_510180 >0 +31.4

CHEMBL360999 �8.1 �6.5 Schrod_558540 >0 +4.5

CHEMBL361153 �8.8 �7.1 Schrod_621157 >0 +228.6

CHEMBL368883 �8.2 �6.6 Schrod_721049 >0 +234.5

CYP 2c9 S-warfarin (cocrystal) �8.7 �9.4

sulfaphenazole �9.2 �9.1 CHEMBL464595 �10.3 �11.5

CHEMBL1109 �9.2 �9.2 CHEMBL514730 �10.4 �11.6

CHEMBL455975 �8.9 �11.6 Schrod_452534 �4.9 �9.3

CHEMBL455976 �10.6 �11.4 Schrod_480983 >0 �7.7

CHEMBL456181 �10.7 �10.9 Schrod_481019 �8.3 �9.9

CHEMBL456432 �9.1 �9.8 Schrod_484875 �2.8 �9.6

CHEMBL457087 �8.3 �10.1 Schrod_510180 >0 �4.4

CHEMBL458566 �8.6 �9.4 Schrod_558540 �0.8 �1.4

CHEMBL458567 �8.3 �9.3 Schrod_621157 >0 �7.2

CHEMBL463577 �10.6 �11.6 Schrod_721049 �2.9 �7.6

CHEMBL463976 �9.2 �9.5

CYP 3a4 �7.5 �7.5

nephazodone �9.6 �11.7 Schrod_452534 �1.4 +47.2

CHEMBL1089957 �6.3 �23.3 Schrod_480983 >0 +20.8

CHEMBL270271 �7.2 �12.5 Schrod_481019 �4.3 +5.5

CHEMBL271580 �6.5 �12.6 Schrod_484875 >0 +23.6

CHEMBL507731 �6.5 �26 Schrod_510180 >0 +0.6

CHEMBL573665 �6.7 �23.2 Schrod_558540 >0 �2.6

CHEMBL583954 �6.5 �26.6 Schrod_621157 >0 +27.0

CHEMBL75 �6.3 �17.9 Schrod_721049 >0 +11.8

CHEMBL98745 �9.8 �11.4
aThresholds in bold.
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Chlorthalidone is an antihypertensive/diuretic monosulfamyl
molecule used in oral form and indicated in the management of
hypertension.78 Oxazepam is used in the treatment of anxiety,
alcohol withdrawal, and insomnia. From our calculations, it may
appear that these well-known and in-clinical-use drugs could find
a novel indication against this target and for the treatment of
HIV-1. Oxazepam has been studied and shown to be safe to
coadminister together with the nucleoside HIV-1 RT inhibitor
zidovudine.79,80 A track record for known drugs of widespread
use in the clinic may provide confidence in the safety of using
them for possible new therapeutic indications. Here, the use of
several in silico techniques, both ligand- and structure-based,
provides a clearer picture of possible ligands than that allowed by
using only one technique.81

Most of the highest ranked compounds (those with the best
interaction scores, efficiency indices, and hydrogen bonds to the
protein backbone) made two correlated hydrogen bonds with
the protein backbone lysine 101, accepting a hydrogen bond
from Lys 101 N and donating one to Lys 101 O. This interaction
was highly rewarded by the XP GlideScore scoring function
since correlated hydrogen bonds (pairs of acceptor/acceptor,
acceptor/donor, or donor/donor atoms that are only one rota-
table bond apart)43 receive a larger reward to the binding score
than isolated ones,43 and in addition, they were formed in the
hydrophobically enclosed volume in the binding site that was
inaccessible even to the water molecules that the program uses
to flood the binding site. The latter feature was further rewarded
by the scoring function. This interaction is also formed by the

known and in-clinical-use drugs efavirenz and etravirine. Through
the desolvation term in the Autodock4 scoring function, they also
scored deeply for Autodock. Many of the top compounds pre-
sented a central triazine functional group. This group has an
appropriate structure and geometry that allowed these com-
pounds to interact with the protein Lys 101 backbone atoms in a
binding mode similar to that of known inhibitors. The drug etra-
virine and the inhibitor rilpivirine have the closely related pyrimi-
dine group as the central core. Different aryltriazines have recently
been reported to have wild-type HIV-1 RT activity,81,82 which
shows that our method can identify compounds with chem-
ical motifs similar to those reported to be experimentally active.
Figure 4 shows the binding poses for etravirine and compound
10 docked into structure 1S9E and the close similarity between
their binding interactions. Tyr 181 is shown in the front left
part of the figure, with Tyr 188 in the back left. Lysine 101 is on
the right-hand side of Figure 4.
Compound 10, for example, also participates in many hydro-

phobic and aromatic interactions in the binding site as well as in
hydrogen bonds to the main chain atoms of Lys 101. It makes
hydrophobic contacts with Leu 100, Val 179, and Leu 234 and
has aromatic contacts between its indole ring and the aromatic
side chains of Trp 229, Tyr 181, and Tyr 188, as well as between
its substituted benzene ring and Tyr 318. The 3-D view of the
interactions and binding modes can be seen in Figure 4, while
2-D (“flat”) representations are shown in Figure S1 in the Sup-
porting Information. The polar part of the molecule points
toward the opening of the binding site and would be more in

Figure 5. Superposition of binding modes between the extra set of known active binders (backbone in blue) and the original X-ray native (cognate)
cocrystallized ligands (backbone in yellow) and the docked native (cognate) ligands (backbone in magenta) for the set of antitargets (backbone in
white). rmsd's between the original X-ray cognate ligand and the docked cognate ligand binding pose: (a) SULT, rmsd = 1.81 Å; (b) PXR, rmsd = 1.97 Å;
(c) CYP2a6, rmsd = 0.95 Å; (d) CYP2c9, rmsd = 0.54 Å.
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contact with water molecules, therefore reducing the energetic
cost of desolvation, and interacts with polar groups at the mouth
of the binding site, such as Lys 101 and Glu 138 (chain B). Etra-
virine and efavirenz have similar binding interactions, only etra-
virine uses its substituted benzene rings and efavirenz uses its
cyclopropylethynyl group to interact with the aromatic side chains
of Tyr 181 and Tyr 188 in the binding site (3-D view in Figure 4,
2-D view in Figure S2 in the Supporting Information). Our
procedure retrieved compounds that would interact well with
either tyrosine or cysteine in the position sequence number 181
in chain A. In addition, the close similarity in binding poses be-
tween the original X-ray (cognate, not optimized) ligand and its
docked binding pose (rmsd(heavy atoms) = 0.83 Å), and be-
tween these and the known drug etravirine and proposed ligand
10, is clear from Figure 4.
Quinolin-2-ones (such as 2) and chromen-2-ones (such as 6)

were also repeatedly present, which have close resemblance to
the known inhibitor efavirenz and to the drug oxazepam. A few
purines (such as 5 and 11) and related rings (such as the indole 10)

were also found. Compounds with charged groups such as
ZINC05353109 (not shown) had relatively deep scores that
are the result of ionic bonds between these compounds and the
proteins. However, this can also result in a too high polar surface
area, which reduces the compound’sΔG/PSA efficiency index, as
is the case with 11.
Commercially available collections such as those compiled in

the ZINC database typically contain a large amount of com-
pounds that seem to have been synthesized for other design
efforts, for example, kinase inhibitor design, as many contain the
typical sugar unit, a purine or pyrimidine base, and a polar tail
intended to mimic ATP for ATP-competitive kinase inhibitors.
For some compounds docked in this study, interaction with the
backbone atoms of Lys 101 of HIV-1 RT echoes the interactions
formed between kinase inhibitors and the backbone atoms of the
hinge Leu 83 in cyclin-dependent kinase 2 (CDK2).27 The ZINC
database also contains compounds that resemble tricyclic anti-
depressants, nucleosides, and other typical core structures from
different therapeutic areas. However, our filtering and docking

Figure 6. Interaction matrix between ligands and antitargets calculated with Glide.
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method retrieved those compounds with good predicted proper-
ties against both wild-type and drug-resistant HIV-1 RT, as well
as recovering the known binders in Table 3 in the top 1% of the
screened database. As confirmation that compounds may have
more than one pharmacological activity, a chemical structural
search on the proposed compounds showed that antitumor
properties (as a p53 activator) have been determined for 11
(NSC211340)84 and micromolar anti-influenza,85 as well as
antitumor (leukemia) properties86 have been determined for
1 (ZINC01645740, also named CAS18020459-5 and NSC676348).
Together, the analysis of the ligand compound libraries, such
as the NSC and ZINC collections, shows that they must be
searched and filtered carefully.
Antitargets. The antitarget binding sites varied from the

small, enclosed, and solvated CYP binding sites to the very tight
binding site of SULT and to the large, hydrophobic PXR binding
site. A pharmacophore has been suggested for PXR that has
predominantly hydrophobic as well as a few hydrogen bond
donor and acceptor features.87�91 CYP 2a6 has been proposed to

be bound by ligands forming a pharmacophore containing a
planar hydrophobic element, in addition to a single hydrogen
bond donor/acceptor.92 CYP 2c9 binding has been proposed to
have a hydrophobic group plus an anionicmoiety and/or one93,94

or two95 hydrogen bond acceptors 7 Å from the site of meta-
bolism. CYP 3a4 can accommodate several substrates simulta-
neously in its binding site,96�98 which increases its binding fea-
tures,99 and a pharmacophore composed of two hydrogen bond
acceptors, one hydrogen bond donor, and a hydrophobic region
has been proposed,100 among others.13�15 Many of these pro-
teins are promiscuous in the sense that they accept a range of
differently sized ligands due to the size of their binding pocket
(PXR, CYP3a4) and/or their flexibility (CYPs). The thresholds
for recording a hit against an antitarget are shown in Table 4 and
are based on both the GlideScore and Autodock score of native
ligands. A value of �7.5 kcal/mol was heuristically adopted for
CYP P450 3a4 as a threshold value since there was no cocrys-
tallized ligand present in the structure and is comparable to
the calculated value of known ligands. Table 4 also shows the

Figure 7. Interaction matrix between ligands and antitargets calculated with Autodock.



2608 dx.doi.org/10.1021/ci200203h |J. Chem. Inf. Model. 2011, 51, 2595–2611

Journal of Chemical Information and Modeling ARTICLE

recorded interaction score of the extra set of known active com-
pounds, as well as some Schr€odinger decoys.
The general concurrence in the scores of the cocrystallized

known ligands in Table 4 with those of the extra, spiked set of
known inhibitors for the same antitargets, as well as the result
that none of the known nonbinders (inactives) nor most of the
decoys scored deep enough as compared to the respective co-
crystallized ligand, suggests that our procedure may be valid to
compare to experimentally observed phenomena of probable
binders vs nonbinders. This was also confirmed by the close simi-
larity in binding modes between the extra set of known binders
and the native (cognate) cocrystallized ligands, as well as the docked
native (cognate) cocrystallized ligands, as seen in Figure 5. The
rmsd of heavy atoms between the original X-ray cognate ligand
(not optimized) and its docked pose was less than 2 Å for all cases.
A visual representation of the predicted compound antitarget

interaction arrays from Table 4 is shown in Figures 6 and 7,
where the binding interactions determined, respectively, byGlide
and Autodock against the five antitargets for all the compounds
in Table 4 are presented in color code. Heuristically, compounds
that have a high array sum (combined hit string, i.e., sum of all
protein interactions with all docking programs) or a high indivi-
dual array count (individual hit string, i.e., sum of all protein in-
teractions with one docking program) may be flagged for warning
to establish a rapid method to detect problem molecules early
during hit identification. There is less consensus between the
docking programs as shown for the HIV-1 RT hits, but this is by
design, since for antitarget hits we are interested in identifying
compounds that may have any predicted interaction by either of
the programs, whereas for HIV-1 RT, the onus was on finding
those hits with high ranks by both programs. XP GlideScore
performed better than Autodock4 at early retrieval of actives,
though both performed reasonably well at scoring antitarget
positive and negative controls (actives and inactive + decoys,
respectively).
A perspective similar to that presented in Figures 6 and 7 for

the target proteins and the ligands shows that most of the com-
pounds have a strong interaction with all of the target proteins
using both docking programs (all squares black or gray). This
enabled selection with a higher degree of confidence of those
candidate compounds for all of the targets in question, in consensus
between different methods (logical “AND”), as well as detection of
those with possible interactions against the antitarget set, as indi-
cated by either docking program (logical “OR”). The antitargets
can be further assembled and used in the manner described in the
present work and be tailored to suit antitargets of interest, indivi-
dual design projects, or ligand side effect and off-target profiling.
Another way of including consideration of possible toxic or

metabolic effects is by ligand similarity searches101 and keeping
track of known functional groups that can cause metabolism and
toxicity problems, such as polyhalogenated compounds, aromatic
nitro groups, bromoarenes, and hydrazines, for example,6 or by
calculating GRID molecular interaction fields for the antitarget
site and comparing them to those of the substrate (as in Meta-
Site).102 Interaction sites for molecules with CYP proteins for
different fragment patterns can be scored on the basis of the
interaction of typical functional groups in the different CYP
binding sites.103 The profiled compounds in Table 3 and Figure 5
were also verified according to the ADMET score of Gleeson
et al.,104 and the vast majority had scores under 1 (i.e., they were
comparable to known oral drugs; see Table S2 in the Supporting
Information).

In addition to broadly distinguishing likely binders for the
HIV-1 RTwild-type and drug-resistant mutants, and their known
inhibitors and nonbinders, the known HIV-1 RT inhibitors had
low to moderate interaction arrays against the set of antitargets
(though less consensus between programs, Figures 6 and 7,
which was introduced by design), and the known antitarget in-
hibitors had strong interactions (deep scores) with the antitar-
gets (by broad consensus between programs, Table 4). The
majority of the highly ranked ligands in Table 3 also have low to
moderate predicted interaction arrays against the antitarget set
(Figures 6 and 7). Together, these results suggest the validity of
our proposed model to distinguish candidate compounds against
targets of interest while recognizing those that can have a pro-
bability of interaction with an antitarget. It must be stressed that this
does not supplant the need for experimental determination of
metabolic effects, but provides an early warning system to flag com-
pounds for further investigation and consideration in drug design.

’CONCLUSIONS

The results show that as early on as possible in the drug
discovery process, during hit identification (hit discovery) and
before lead optimization, a process should be established where
compound structure libraries are simultaneously screened against
specific antitargets and on-targets, and this may help to identify
early some of the possible metabolism effects of ligands, as well as
their activities. Each different optimization strategy may build its
own set of antitargets, which can be calibrated according to
specific constraints. Simultaneously, novel targets for interaction
of the studied compounds can be identified by including other
proteins in the set of targets. Off-targets may be included as extra
targets if beneficial or as antitargets if nondesired. Though a small
group of different conformations (the important Tyr 181 side
chain conformation, in three different structures—one of them
including a tightly bound water molecule) and a mutation (the
important, drug-resistance-conferring Y181C, in two different
structures) were included in this study, more conformations of
the same protein generated through X-ray crystal structure
determination, NMR solution structure determination, and/or
MD simulations can be added to expand both the target and
antitarget sets. This may help to include protein and protein�
ligand complex flexibility and perhaps induced-fit effects. Flex-
ibility may be more of an issue for certain proteins over others
that may be more rigid (for example, PXR). Any predictions
made computationally should be finally tested by experiment.

A number of interesting, structurally diverse, small-sized com-
pounds were found that may interact with both wild-type and
Y181C drug-resistant HIV-1 reverse transcriptases. A few known
drugs with a different indication were identified as possible
binders of HIV-1 reverse transcriptases. Furthermore, com-
pounds resembling the known drugs efavirenz and etravirine
were discovered, in addition to compounds with new chemistry.
Compounds containing a triazine core and aromatic side chains
may represent an alternative structural core and drug design
route that is based on the similarity of ligand chemical functional
group arrangement, binding mode, and interactions to the
protein to those of the known inhibitors etravirine and rilpivirine.
We also indicate a way of improving candidate HIV-1 RT binders
by achieving lower ΔG/PSA ligand efficiency values. All of the
proposed compounds are predicted to have good bioavailability,
cell permeability, and buried total apolar surface area.
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Many of these ligands had low predicted interaction arrays
against some of the known metabolism proteins. The known
drugs chlorthalidone and oxazepam had quite low predicted
interaction against the set of antitargets, as well as molecular
structures and binding patterns (poses) to HIV-1 reverse tran-
scriptase similar to those of the known drug efavirenz. This may
show how approved drugs that are already in use and are
relatively safe have low interactions with the antitarget set that
we have studied, and thus, our procedure may provide a way to
design sets of antitargets and interaction arrays that could, in
principle, help to improve themetabolic interactions of candidate
compounds. Our approach included broadly following experi-
mentally observed binders and nonbinders for both targets and
antitargets, not for supplanting experimental testing, which is still
required, but to provide an early warning system for multitarget
optimization.

Structural searches carried out postdocking allowed finding
other uses for the proposed compounds, and such searches
should be carried out as standard procedure in virtual screening.
In addition, short postdocking minimizations can resolve small
strains and deviations from a trans, planar ester or amide confor-
mation in docked ligand poses.
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