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ABSTRACT: The increasing knowledge of both structure and
activity of compounds provides a good basis for enhancing the
pharmacological characterization of chemical libraries. In
addition, pharmacology can be seen as incorporating both
advances from molecular biology as well as chemical sciences,
with innovative insight provided from studying target-ligand
data from a ligand molecular point of view. Predictions and
profiling of libraries of drug candidates have previously focused
mainly on certain cases of oral bioavailability. Inclusion of
other administration routes and disease-specificity would
improve the precision of drug profiling. In this work, recent data are extended, and a probability-based approach is introduced
for quantitative and gradual classification of compounds into categories of drugs/nondrugs, as well as for disease- or organ-
specificity. Using experimental data of over 1067 compounds and multivariate logistic regressions, the classification shows good
performance in training and independent test cases. The regressions have high statistical significance in terms of the robustness of
coefficients and 95% confidence intervals provided by a 1000-fold bootstrapping resampling. Besides their good predictive power,
the classification functions remain chemically interpretable, containing only one to five variables in total, and the physicochemical
terms involved can be easily calculated. The present approach is useful for an improved description and filtering of compound
libraries. It can also be applied sequentially or in combinations of filters, as well as adapted to particular use cases. The scores and
equations may be able to suggest possible routes for compound or library modification. The data is made available for reuse by
others, and the equations are freely accessible at http://hermes.chem.ut.ee/~alfx/druglogit.html .

■ INTRODUCTION

The adequate description of drug molecules’ properties and their
differences from those of nondrug ones are important in the
design and discovery of new therapeutic compounds. In addition,
pharmacology recently incorporates both advances from
molecular biology as well as chemical sciences, with innovative
insight provided from studying target-ligand data from a ligand
molecular point of view.1−4 In principle, the better their
characterization in chemical and pharmacological terms, the
easier it would be to distinguish drug-like properties of
compounds, as well as to best ascertain their specific interactions
with different targets and modes of action. “Drug-likeness” may
thus be defined as some set of properties or fragments that are
present in currently accepted drug compounds, but less so in
nondrugs, so that compound libraries can have chemical
characteristics similar to those of known drugs. These character-
istics also change over time5 given new and retracted drugs.
Complying with “drug-likeness rules” will not mean that a
compound is likely to become a drug, rather that it has chemical
properties similar to those of drug compounds. Other issues will
be critical, such as pharmacodynamics, pharmacokinetics, side-
effects, toxicity (the latter being dose-dependent), therapeutical

windows, market considerations, competitors, and intellectual
property, among others.6

Drug compounds have been studied from the point of view of
their oral bioavailability,7 their drug-likeness,8−12 as well as their
lead-likeness,13 number14 and topology of rings,15 molecular
frameworks,16,17 fragments,6,18−22 using linear discriminant
analysis23 and decision trees,24 among others.25−29 Their
properties have been classified in analogy to Global Positioning
System (GPS) coordinates,30 as well as in cartography terms31

and chemical space.32 Some early studies used Bayesian8 or feed
forward9 neural networks to distinguish between drugs and
nondrugs. Some studies have focused on target-family specific
drug properties,33 such as protease inhibitors and nuclear
hormone receptors,34,35 kinases,36,37 and GPCRs,38 using
principal components analysis39 and also using naive Bayesian
methods, neural networks, and support vector machines in
chemogenomics.40−50 However, due to various limiting factors,
there is no commonly accepted, routine method for a complete
and simple comparison of drug properties relative to nondrugs
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(i.e., negative controls) and especially for involving specificity on
disease or location of target in the organism.5 The latter may
assist other drug design techniques that are based on ligand
similarity and/or target structure principles. Drug repurpos-
ing51−53 (i.e., the discovery or development of additional or
alternative therapeutic indications for drug compounds) and
polypharmacology or systems pharmacology54 (i.e., the inter-
actions between a compound and many targets, or many
compounds against many targets at different organizational
levels), as well as changing techniques55 applied over time, will
also create moving definitions of disease categories. One way of
controlling for this is limiting the classification of compounds and
using only those that belong to a specific disease category.
Another factor to include is the different biomolecular targets of
drugs, such as the recent realization that breast cancer consists of
at least 10 different types of disease on the basis of their different
gene expression.56 Organ compartmentalization thus can
provide the best answers when coupled to other structure- and
ligand-based methods.
The present study is based on logistic regressions (LR) and on

a large set of structural and experimental activity data. LR has
been proven useful in medical and biological research because it
can smoothly relate the probability of a deterministic outcome
(disease present or not present, for example), from one or more
dependent variables that can be continuous or discrete.57,58 It is a
special case of the linear model that is particularly useful for
classifying binary outcomes (binomial regression) on the basis of
several variables. It has been used in drug design to select water
molecules appearing tightly bound in protein X-ray crystal
structures,59 as well as to improve neural network classifications
of drugs and nondrugs60 and to select between druggable and
nondruggable binding sites in proteins.61 The outcome
probability is distributed evenly between probability values of 0
and 1 through the logarithm of odds ratio (see Appendix 1 in ref
59), and so it is well suited for comparing the properties of
compounds that can have a varying degree of drug-like or
pharmaceutically relevant character.
Classification of drug compound properties and in contrast to

nondrugs has been previously achieved through statistical
comparison of probability density functions,5 as well as using
principal components analysis.62 These previous studies high-
lighted the usefulness of considering negative examples, as well as
building data sets of experimentally available data for drugs
(belonging to multiple administration routes and disease
categories) and nondrugs (biologically active compounds that
have similar binding affinity ranges). In the present work,
multivariate LR is used to study the different chemical and
pharmacological properties of drug and nondrug data sets, in
order to classify compounds on the basis of simple, readily
available, and physicochemically rational properties and produce
their probability of classifying as a drug or a nondrug, as well as
their probability of belonging to a highest (broadest) anatomical
level, i.e., disease category specificity.
One of the advantages of the present method is that a

quantitative measure is provided of the drug-like nature of a
compound. This is beneficial because there are no strict cutoffs,
and different properties can be involved. The use of a strict cutoff
such as in Lipinski et al.,7 can miss important compounds that lie
slightly outside the defined ranges for the 90% of compounds.5

However, it is becoming important to recognize that the
molecular properties that are characteristic of drug compounds
are a gradual spectrum,63,64 and therefore, the method presented
here is well suited for this task. New molecular properties not

used before for characterizing drug-likeness are provided in this
work. In addition, the most relevant properties for each drug
category are able to be selected, and this may be of use when
designing and filtering compounds of libraries for drug design.

■ METHODS
Data Sets. The training5 and validation62 sets of compounds

were adapted from previous publications.
Training Set. A training collection of drug compounds and

their inhibition or dissociation constants were extracted from
several data sets, including the PDBBind version 2005,65 the
SCORPIO data set,66 and KiBank.67 The training set of nondrug
compounds was also collected from these sources, and their
nonexistence as drugs was verified in the DrugBank68 database.
Together, they composed a balanced set with n = 311 for drugs
and n = 320 for nondrugs. Important features of the sets are that
their distribution of binding energies and the number of
compounds is similar for both drugs and nondrugs and that
the drugs include all administration routes, not only oral. This
can be seen in their superposed histograms in Figure S1 in the
Supporting Information. This introduces a challenge to
distinguish drugs from active, nontherapeutic compounds
(nondrugs) because the differences between drugs and nondrugs
are not judged by their binding energy. All structure files were
checked for consistency and errors corrected.

Validation Set. A different set of drug and nondrug
compounds (independent validation set) was compiled with
newer collections of the PDSP database69 and the PDBBind
database version 200970 that were not available at the time of
collecting the training set (i.e., compounds already present in the
PDBBind database version 2005 were excluded from the
validation set). As such, compounds of the validation set are
completely independent of the training data set. Drug or
nondrug status was verified using the DrugBank. The validation
data set contained 106 drugs and 106 nondrugs. Predictions were
run on the values of the (whole molecule) variables for each
compound in the validation set using the regression equations
obtained previously with the training set. The predicted outcome
for each compound (the probability of classifying as drug or
nondrug) was compared to their true status and percents of miss-
prediction for the validation set were calculated. Mathew’s
correlation coefficients were also computed, and distributions of
probabilities for each group were plotted. Receiver−operator
characteristic curves and areas under the curves were also
analyzed.

Further Tests. Another set of 224 compounds was also used
for further tests to evaluate DC classification. Thus, the total
number of compounds used in this study was 1067.

Physicochemical Properties. A small set of readily
obtainable properties was calculated: logP (the logarithm of
the octanol/water partition coefficient) was obtained using the
atom-additive XLOGP method;71 Marvin Beans version 5.3.872

was used for calculating number of heavy atoms (NHA), exact
mass (MW), number of carbons (NoC), atom count, hydrogen
count, bond count, ring count, aliphatic ring count, aromatic ring
count, aromatic atom count, hydrogen bond donor count,
hydrogen bond acceptor count, rotatable bond count, molecular
surface area (MSA), polar surface area (PSA), apolar surface area
(APSA), molecular polarizability (molpol), Wiener index
(Wiener), Balaban index, Harary index, hyper-Wiener index,
Platt index, Randic index, Szeged index, andWiener polarity. The
binding energy, ΔGbind, of compounds to their binding partner
proteins was calculated as previously reported,5,62 using the
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experimental equilibrium inhibition or dissociation constants.
Ligand efficiency indices (LE) were calculated by using LE =
ΔGbind/NF, where the normalization factors (NF) were NHA,73

MW,74 NoC,75 PSA,76 MSA, APSA, Wiener index,77 and P
(obtained as 10logP).78,79

Disease Categories. The drugs in the data set were
characterized with an additional dimension according to
correspondence in the 14 disease categories (DC) of the first
and highest, anatomical, level of the Anatomical Therapeutic
Chemical (ATC) classification, as shown in the DrugBank: DC1
= alimentary tract and metabolism, DC2 = blood and blood
forming, DC3 = cardiovascular system, DC4 = dermatological,
DC5 = genito-urinary system and sex hormones, DC6 = systemic
hormonal drugs excl. sex hormones and insulins, DC7 = anti-
infectives, DC8 = anti-neoplastic and immunomodulating
agents, DC9 = musculo-skeletal system, DC10 = nervous
system, DC11 = antiparasitics, insecticides and repellants,
DC12 = respiratory system, DC13 = sensory organs, and
DC14 = various drugs. There are instances of drugs belonging to
more than one DC at a time, such as with glucocorticoids (for a
detailed description, see ref 62).
Multivariate Regression. The module glm in the statistical

computing package R,80 was used for correlations, statistical tests,
and regression analysis. Direct Pearson correlations were
calculated between all of the variables described above. Direct
univariate logistic regressions were calculated between each
variable and the outcome variable of drug (coded 1) or nondrug
(coded 0). Further, all the possible combinations were generated
between the variables taking two, three, four, and five elements at
a time, and multivariate logistic regressions were computed using
these combinations and the outcome variable of drug or
nondrug. The predicted response (probability (P) of outcome
being drug, called Pdrug) is calculated using the intercept (β) and
coefficients (α1,...,αn) of the variables (X1,...,Xn) in logistic
regression, according to57,59

=
+

β α α

β α α

+ +

+ +P
e

e1

X X

X Xdrug

( ... )

( ... )

n n

n n

1 1

1 1 (1)

The probability of classifying as a nondrug is thus, Pnondrug = 1
− Pdrug. A univariate regression corresponds to the particular case
of n = 1 in eq 1. In addition to the drug/nondrug comparisons, all
the Pearson noncorrelated combinations of variables were used
to calculate multivariate logistic regressions with the outcome
variable of belonging to each disease category (coded 1 for
membership, 0 for nonmembership).
Statistical Tests. The regressions were accepted if each of

their variables were statistically significant at the 95% confidence
level or higher (p < 0.05), by rejecting the null hypothesis that the
association between variables could be due to random variation.
In addition, the overall model was also required to be statistically
significant at the 95% confidence level or higher, against a null
model (p < 0.05). The difference between the residual deviance
for the model with predictors and the residual deviance for the
null model provides the test statistic, which follows a chi-squared
(χ2) distribution with degrees of freedom equal to the number of
predictor variables in the model.81

Predictions. A percent of miss-prediction was calculated by
substituting the variable values into eq 1 and comparing the
predicted (probability of being a drug compound, threshold P =
0.5) to the true outcome variable (drug (1) or nondrug (0)). In
our previous work, different thresholds were selected to
differentiate the classes of compounds through their probability

density functions on the basis of selectivity and drug to nondrug
ratio, allowing for tuning of these parameters according to
different function forms.5

In logistic regression, there does not exist a correlation
coefficient directly comparable to the Pearson’s RPearson of
ordinary regression. Instead, the regression coefficients are
calculated by maximum likelihood methods common to all
generalized linear models, computed numerically by using
iteratively reweighted least-squares, and the regression’s quality
is evaluated by testing the statistical significance of the χ2 statistic
as described above. In addition, further tests of accuracy are
provided by the described percent of correct predictions, as well
as by Mathew’s correlation coefficients (MCC, eq 2, where TP =
true positives, TN = true negatives, FP = false positives, and FN =
false negatives)82

= × − ×
+ × + × + × +

MCC
(TP TN) (FP FN)

(TN FN) (TN FP) (TP FN) (TP FP) (2)

Recovery of Actives. Receiver−operator characteristics
(ROC) curves were computed as true positive rate (i.e., fraction
of known drugs) vs false positive rate using the obtained
regressions, and their areas under the curve (AUC) were
calculated using the Python module CROC83 and xmgrace.84 A
similar measure, the drug to nondrug ratio, was calculated in our
previous work using a different set of function forms.5

Enrichment was determined through the ROC curves by
calculating the percent of true positive rate at 5% of false
positive rate.

Bootstrapping. The program R80 was used to bootstrap the
regression intercepts and coefficient values and perform 1000
fold substitution and resampling runs from which standard
errors, bias, and 95% confidence intervals were established for
measuring robustness in the functions.

Variable Terms. The names, drug status, training or
validation set, and disease category of all compounds are
shown in Table S1 in the Supporting Information. Themolecular
properties were calculated in a few minutes for the 1067
compounds. A Pearson correlation matrix was computed for the
entire cross terms (i.e., pairs of descriptors). For all cross terms
that were either strongly correlated (RPearson > 0.6) or strongly
anticorrelated (RPearson < −0.6) with each other, the multivariate
logistic regressions including them in their variables were
discarded, thus avoiding collinearity. The discarded pairs of
cross terms are shown in Table S2 in the Supporting Information.
From the single direct, linear, Pearson correlation calculations,
only one variable (hydrogen bond acceptor count) was strongly
anticorrelated (RPearson <−0.6) with the outcome of being a drug
or nondrug. For the logistic regressions, the total number of
regression expressions using up to five variable terms at a time
and one outcome variable was 52,521,875 (355). The full
molecular properties calculated for all the compounds in the data
sets are available in Table S3 in the Supporting Information.

■ RESULTS AND DISCUSSION
Multivariate Logistic Regression Analysis. Scripts were

written to build these cleaned terms (i.e., terms of variables
excluding the Pearson correlated pairs of descriptors mentioned
above), feed them to regression analysis in the software package
R, and then to check for statistical significance of each variable
and of the regression equation as a whole, as well as their
selectivity between DCs for the DC comparisons. Regression
equations were accepted if both (i) all variables had statistical
significance at the 95% confidence level or higher (p < 0.05), thus
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discarding that a correlation between the variables could have
arisen by random variation and (ii) the chi-squared (χ2) test
statistic for the overall model was lower than 0.05 (i.e., 95%
confidence level or higher, p < 0.05), thus discarding that a null
model would perform better. Thanks to this, a selected number
of regression equations were filtered from the large number of
calculated regression equations. These regression equations were
then compared between themselves using the number of true
positives, true negatives, false positives, and false negatives,
Mathew’s coefficients, and by the percent of miss-prediction
using the values of the variables of the training data set as well as
those of a validation data set. The regressions that produced the
highest number of true positives and true negatives, as well as
lowest numbers of false positives and false negatives, were
selected among the best. These would have the highest MCC
values, indicating a good recall of positives and discrimination of
negatives. In addition, the selection procedure for the best
regressions included choosing those with a high accuracy of
prediction both for training and validation data sets, as well as
those regressions with small residual deviations and small
standard errors as determined by the bootstrapping procedure.
The distribution of predicted values was also analyzed in order to
select the best regressions and discard those that did not produce
a clear enough separation of the compounds. A final criterion for
selection of the best regressions was the smallest possible number
of variables to retain the ability to rationalize the equations in
terms of their physicochemical meaning. A selection of the best
regression expressions is presented in Table 1, including their
percent of accurate predictions and miss-predictions for training
and validation data sets, mean deviance of residuals, and standard
errors.
One or several of the expressions in Table 1 can be used to

classify compounds based on their predicted probability of being
a drug compound or not. They can be selected on the basis of
their prediction accuracy, the relevance or availability of their
descriptor variables, or their physicochemical relevance to a data
set at hand. They can also be selected on the basis of their mean

of deviance residuals or on the standard errors in their intercept
and coefficient(s). They can also be used to filter compounds
based on one or several of the expressions 3−10, for example, in
hierarchical (i.e., successively applied or daisy-chained) filters. It
is important to note that due to the small number of variables in
the equations, they remain immediately interpretable in chemical
and physical terms. They are not hidden, nor do they suffer from
overfitting or complex relationships between variables and
outcome. As such, they should be easily applied in many settings.
The standard errors for the regression intercepts and

coefficient variables are low. The relative standard errors
(Relative Std. Err. = (Std. Err./Mean)*100) are mostly around
10% or lower, which indicate the reliability and precision of the
statistical estimates. The 1000 fold bootstrapping (1000
resampling runs or replicates) provided values of standard
error and bias estimate that show the reliability and small
variance (robustness) in these parameters, as well as reasonably
tight 95% confidence intervals (Table S4 in the Supporting
Information).

Predicting Drugs or Nondrugs. From Table 1, one of the
simplest regression equations is that for the univariate hydrogen
bond acceptor count (eq 3), and it serves well to illustrate the
regressions. The predicted outcome for this variable for the
training data set was calculated by substituting eq 3 in eq 1, to
produce eq 11, and plotted in Figure 1 together with the
corresponding values for the validation set compounds using the
regression equation thus developed (eq 11).

=
+

− *

− *P
e

e1
drug

(3 0.38 AcceptorCount)

(3 0.38 AcceptorCount) (11)

Figure 1 shows the smooth transition between the probability
of drugs and nondrugs based on their values of hydrogen bond
acceptor count. The good agreement between the two data sets
indicates that the regression equation is valid and can be used on
a wide variety of compounds (those for which the descriptor can
be calculated) in order to quantify a degree of drug-likeness.

Table 1. Logistic Regression Expressions Corresponding to Equations with Statistical Significance at the 95% Confidence Level or
Higher (p < 0.05) To Predict the Probability (P) of a Compound Being a Drug or Nondruga

Intercept (Std. Err.) and Coefficients (Std. Err.)*Variables

expression training set prediction accuracy (%) validation set prediction accuracy (%) median of deviance residuals sensitivity (%)

3 − *Acceptor count3(0.3) 0.38(0.03)

79 70 −0.03 91

4 − *PSA2.7(0.2) 0.026(0.002)

79 76 −0.03 91

5 + * − *ring Count PSA1.7(0.3) 0.51(0.07) 0.030(0.002)

82 74 −0.02 90

6 + * + * − *Paliphatic ring count log MW2.3(0.3) 0.8(0.1) 0.50(0.05) 0.010(0.001)

85 78 −0.01 88

7 + * − * − *aliphatic ring count PSA bond count2.7(0.3) 0.8(0.1) 0.031(0.003) 0.011(0.005)

82 77 −0.02 88

8 + * − × × * − *− −Plog Wiener index PSA2.1(0.3) 0.15(0.06) 1.19 10 (4.7 10 ) 0.018(0.003)4 5

82 74 −0.01 92

9 Δ− * − * − * − *Balaban index aromatic ring count donor count G NHA3.5(0.7) 0.8(0.2) 0.3(0.1) 0.76(0.07) 1.9(0.7) /bind

84 75 −0.01 90

10 Δ+ * + * − * − *Paliphatic ring count log PSA G Wiener0.9(0.4) 0.8(0.1) 0.15(0.05) 0.026(0.003) 56.2(15.5) /bind

83 77 −0.02 91
aP threshold set at P = 0.45.
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Figure 1a shows how true drugs mostly predominate in the early
(top) part of the curve, while nondrugs are mostly in the bottom
part. The shape of the plots follows an inverse sigmoidal function
(i.e., showing anticorrelation), decreasing gradually from
probabilities close to 1 for a small number of hydrogen bond
acceptors to a probability close to zero for a large number of
hydrogen bond acceptors. The transition between the two
reflects the slowly differing nature between compounds due to
their number of hydrogen bond acceptors, and there is a
threshold around 8 acceptors (inflection point) for both the
training set and the validation set. These results are in agreement
with the threshold of less than 10 acceptors included in Lipinski’s
rule-of-five7 and particularly well with the threshold of 8
acceptors determined for 90% of marketed drugs.27 The
threshold of close to P = 0.5 produced a good distinction
between drugs and nondrugs, with only a small overlap between
both groups of compounds at that P value (see Figure 4 below).
The inverse relationship between the independent and outcome
variable is also evidenced in the negative coefficient in eqs 3 and
11. The equations also allow a quantitative analysis: in eq 11, for
every unit increase in the number of acceptors, the probability of
a compound being classified as drug decreases, i.e., the log odds
of being a drug decreases by 0.375. This can also be expressed as
for every unit increase in number of acceptors, the odds of being
classified as a drug compound versus a nondrug decrease by a
factor of 1.455. Alternatively, this can also be expressed as every
unit increase in number of acceptors decreases the odds of being
a drug by 45.5%. The rationale is that the more hydrogen bond
acceptors a molecule may have, after reaching a limit, they will
become an obstacle for a compound to reach its target, as well as

have more groups that may complicate metabolism, as well as
increase the desolvation penalty for extracting from bulk solvent
and binding to its target.
Figure 2 shows the logistic relationship between PSA (in Å2)

with the probability of a compound’s classifying as a drug (Pdrug)
for all compounds studied, according to eq 4.

As was the case for expressions 3 and 11, the properties and
probabilities of training and validation data sets are in good
agreement. There is also a higher proportion of drugs both for
the training set, Figure 2a, as well as for the validation set, Figure
2b, in the early or top part of the curve, corresponding to higher P
values, as well as a higher proportion of nondrugs for both sets in
the bottom part of the curve, indicating less probability of
classifying as a drug compound, i.e., less drug-likeness. The
degree of miss-prediction in the curve is indicated by the number
of drugs in the bottom part and nondrugs in the higher part of the
curves. A perfect curve would have all drugs in the top half of the
curve and all nondrugs in the bottom half. The curves also allow
to see the gradual (here quantitatively described) transition
between drugs and nondrugs. Here, the inflection point at Pdrug =
0.5 occurs at PSA = 100 to 105 Å2. This is also in agreement with
previous studies where values under 140 Å2 were identified as
important to identify good oral bioavailability in compounds,85

as well as with a study where values under 120 Å2 were reported
to be important for orally active drugs that are transported
passively through cells.86

Some of the expressions in Table 1 also show a balance
between terms. For example, in eq 6 the positive coefficient terms

Figure 1. Logistic regression (eqs 3 and 11) between the number of
hydrogen bond acceptors of a compound in the (a) training data set or
(b) validation data set and its predicted probability of being classified as
a drug compound (D, Pdrug = 1), as opposed to a nondrug compound
(ND, Pdrug = 0). Training data set, n

drugs = 311, nnondrugs = 320. Validation
data set, ndrugs = 106, nnondrugs = 106.

Figure 2. Logistic regression (eq 4) between the polar surface area of a
compound in the (a) training or (b) validation data set and its predicted
probability of being classified as a drug compound (D, Pdrug = 1), as
opposed to a nondrug compound (ND, Pdrug = 0). Training data set,
ndrugs = 311, nnondrugs = 320. Validation data set, ndrugs = 106, nnondrugs =
106.
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for aliphatic ring count and for logP are counterbalanced by the
negative coefficient for MW, effectively balancing a larger
number of rings and higher hydrophobicity against a smaller
overall molecular size. A similar behavior is seen in eq 7, where a
larger aliphatic ring count is offset by negative terms for
increasing polar surface area and increasing bond count, i.e.,
constraining size and number of polar groups while permitting
few rings. Equation 8 contains the Wiener index, and eq 10
contains the derived ΔGbind/Wiener. This topologically derived
real number increases with the size of a compound as well as with
its linearity (e.g., extended chains) and is calculated through the
number of bonds and their connectivity in themolecular graph. It
can thus be related to the “compactness” of a molecule, i.e., a
measure of how branched a molecule is, as well as to its
intermolecular interactions.87,88 Equation 9 contains the Balaban
index, another chemical graph derived measure that is less
dependent on the size of the molecule and its number of rings,
and has elements that are lower in less branched isomers.88 Thus,
for both of these indices, a smaller number indicates a more
compact or less branched molecule.
Ligand Efficiency. Ligand efficiency indices are also present

among the terms of the expressions in Table 1 (eqs 9 and 10).
They were usually found multiplied by negative coefficients that
applied on the negative sign from the ΔGbind part produce a
positive correlation effect on the predicted outcome probability
of being a drug. This makes sense because the larger the value of a
LE the more effective the compounds will be due to there being
fewer parts of the compound that do not participate in binding.
For a large LE value, either or both the binding energy must be
high and the NF must be small. Ligand efficiency indices are thus
useful in characterizing drug compounds as they had previously
been shown for distinguishing probability density functions,5 as
well as improving correlations between experimental LE and
calculated LE values,75 and grouping compounds in PCA
analysis.62

Lipinski and “Drug-Like” Tests. Tests were also carried out
for a combined term that included the four variables described in
Lipinski’s rule-of-five (R-o-5). Interestingly, the combined terms
did not show correlation with the outcome variable for the
training set, but coding them as a test (i.e., 1 for passing Lipinski’s
rule-of-five criterion, 0 for not) did return an acceptable
regression expression

− + * ‐ ‐1.466 1.983 R o 5 (12)

The equation using this equation had a low miss-prediction
rate of 32% for the training data set, though this same regression

equation produced a high 58% miss-prediction rate for the
validation data set. Similar results were produced by another test
based on the Lipinski test and in addition using the criteria of
PSA < 140 Å2 and number of rotatable bonds under 10 (Veber,
also coded 1 for a pass, 0 otherwise)85

− + *1.719 2.206 Veber (13)

This may be explained by the fact that Lipinski’s rule-of-five
was developed using orally administered compounds that might
provide an indication of bioavailability, and our data sets contain
drug compounds with different administration routes other than
just the oral route. Both the regression equation for Lipinski’s test
and for the “drug-like” test show that the intercept nearly cancels
out the variable, which can be only 1 or 0, so the predicted
outcomes have only two values, one for each value of the variable.
Another explanation is that the rule-of-five could be extended
and modified on the basis of new results that include different
routes of administration and a new set of rules derived for each
administration route.

NearMisses and Prospective Compounds. In addition to
Table 1, the complete numbers of True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives (FN)
as well as Mathew’s correlation coefficients for all the equations
based on expressions in Table 1 are shown in Table 2. In
addition, the area under the curve (AUC) for each ROC graph
for each equation is also shown in Table 2, as well as their
enrichments at the first (top ranked) 5% of the data set, while the
ROC plots are shown in Figure 3.
From Table 2, it can be seen that there is good accuracy for the

amount of true positives and true negatives, as well as relative
symmetry among them, with some equations being better than
others. A scenario can also be foreseen where several of the
equations can be used as successive filters. For example, using eqs
6 and 9 in consensus for the training set leads to a high Mathew’s
correlation coefficient of 0.774, with 257 true positives, 238 true
negatives, 43 false positives, and 21 false negatives. Thus, using
multiple equations as filters may sometimes increase the power of
discrimination.
The ROC curves from Figure 3 as well as the high AUC values

in Table 2 for these equations show a good and early
discrimination between known drugs (true positives) and false
positives, as well as between known nondrugs (true negatives)
and false negatives, much better than random selection. A
random selection would follow the diagonal line and have an
AUC of 0.5, whereas all of these equations have around 0.9 units.
It also shows that the procedure in the equations is adequate and

Table 2. Mathew’s Correlation Coefficient, True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives
(FN) for the Training and Validation Data Sets, Area under the Curve (AUC) and Enrichments at First (top) 5% of Ranked Data
Setab

equation Mathew’s coefficient training data set TP, TN, FP, FN validation data set TP, TN, FP, FN AUC enrichment

3 0.58 244, 257, 68, 64 96, 52, 54, 10 0.86 36
4 0.59 257, 244, 55, 77 97, 65, 41, 9 0.86 43
5 0.64 264, 254, 48, 67 95, 62, 44, 11 0.88 44
6 0.69 274, 261, 38, 60 93, 73, 33, 13 0.90 37
7 0.65 259, 262, 53, 59 93, 71, 35, 13 0.89 45
8 0.64 269, 249, 43, 72 97, 60, 46, 9 0.87 43
9 0.67 274, 255, 38, 66 95, 64, 42, 11 0.91 55
10 0.64 263, 257, 49, 64 96, 67, 39, 10 0.90 44

eq 6 in consensus with eq 9 0.77 257, 238, 43, 21 94, 62, 43, 12 − −
aP threshold set at 0.45. bEquations 3−10 are shown in Table 1. Training data set, ndrugs = 311, nnondrugs = 320. Validation data set, ndrugs = 106,
nnondrugs = 106.
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useful for recovering known actives, in this case known drugs.
This good selection is also proven by plotting the distribution of
predicted probabilities as shown in Figure 4 for eq 9.

Figure 4 shows that the majority of drugs and nondrugs are
clearly separated by their predicted probabilities by eq 9, and only
a very minor fraction of less than 5% of the compounds are in the
region of transition around P = 0.5. Regions of probability that
are more extreme than 0.5 at either end provide a larger
separation between drugs and nondrugs.
Variability near the threshold of P = 0.5 is normal for logistic

regression. Some of the miss-predicted compounds, or “near
misses”, are interesting in their features and chemistry. For
example, for eq 4 the naturally produced drug adenosine slightly

missed the threshold with a P of 0.4. A look at its chemical
structure (Figure 5) shows it has a moderate to high number of

rings of three and a moderate to high PSA of 113.5 Å2. A similar
compound, the modified nucleoside gemcitabine, has one ring
less and nearly 29 Å2 less of PSA. Gemcitabine is the result of
synthesis and design that most likely resulted in improved
physicochemical properties with respect to adenosine, which are
taken into account by eq 5 to produce a P = 0.54. The drug
argatroban (Figure 5) had a P of 0.38. Its values resemble
adenosine’s because it also has a moderate to high number of
rings (three) and a moderate to high PSA (122.8 Å2). On the
other hand, the nondrug ectoine (1,4,5,6-tetrahydro-2-methyl-4-
pyrimidinecarboxylic acid, 2vpn, Figure 5), had a P = 0.67 due to
a low number of rings (one) and a low PSA of 49.7 Å2. In fact, it is
a natural product produced by bacteria to protect against salt and
temperature stress and is used in cream products for human use.
Thus, the equations produced show that a nondrug compound
with appropriate chemical features can be classified as a useful
bioactive and may have a potential to be developed into a
therapeutic compound (provided many other factors). In
addition, the drug character of compounds can be increased by
reducing their number of rings and PSA. The chemical structures
as well as van der Waals surface areas colored according to their
polar atoms for these three compounds are shown in Figure 5.

Figure 3. ROC curves for eqs 3−10 and for random selection (diagonal
line).

Figure 4. Distribution of predicted probabilities according to eq 9.

Figure 5. Chemical structures, drug status and probablility, and van der
Waals surface areas colored according to polar atoms for a selection of
compounds predicted as near-misses (a, c, d) and hits (b) according to
eq 5.
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Equation 9 provided good characterization for the best selling
drugs in the data,89 and are shown in Table 3.
As seen in Table 3, there is a good prediction of different types

of drugs, according to eq 9. The few miss-predictions include the
originally natural products paclitaxel, clarithromycin, and
pravastatin, which may have a more complex chemical structure
than synthesized compounds. Fexofenadine scores low for eq 9
because its Balaban index is higher than other drugs, given that it
is not as small as other drugs, as well as having three aromatic
rings, three hydrogen bond donors, and a comparatively high
number of NHA as compared to other drugs, all of these property
values being disfavored by eq 9. A different equation, such as
using eqs 3, 5, 6, or 8 would be more suitable for fexofenadine,
giving a P = 0.75, 0.73, 0.70, and 0.65, respectively. Equations 4
and 10 give P = 0.58 and P = 0.57, respectively, while eq 7 gives P
= 0.43. In addition, an average over all the P values for
fexofenadine for eqs 3−10 (all of those in Table 1), gives a P =
0.64. Salmeterol, on the other hand, is also slightly atypical for a
drug compound in that it has a large, bulky, and lipophilic group,
in addition to four hydrogen bond donors that also make this
compound score low for eq 9. A different equation would be
more suited for this compound, such as using eq 3 (P = 0.75), eq
4 (P = 0.70), eq 5 (P = 0.65), and eq 8 (P = 0.73). Equations 6
and 7 give P = 0.55 and P = 0.43, respectively. In addition, the
average for salmeterol over eqs 3−10 gives P = 0.62.

Predicting Disease Category Specificity. A similar
procedure was carried out for classifying drug compounds
according to their disease category. Compounds were removed if
they were part of more than one DC in order to reduce the noise
that multi-DC compounds may produce. In this case, drugs were
differentiated among themselves to produce regression equations
that would distinguish a specific disease category from the others
(i.e., drugs in a DC against other drugs in different DCs).
Separation between the individual DCs is not as clear-cut as in
the case of drugs versus nondrugs, and only a few equations with
Mathew’s coefficients higher than 0.35 were obtained. These are
shown in Table 4.
It should be noted that eq 14 provides distinction at a P

threshold of 0.5 between drugs belonging to DC8 versus other
DCs (and eq 15 for DC10) after inserting their terms,
respectively, into eq 1. The same rationalization as performed
for univariate logistic regression with eq 3 can be performed for a
multivariate case, where holding other variables fixed, the
coefficient for a variable shows its change in the log odds of
having a predicted outcome of 1 per unit increase in that variable.
Table 4 also shows enrichments at the first (top) 5% of data set
and AUCs for the respective ROC curves presented in Figure 6.
From Figure 6, it can be seen that these equations still perform

better than random and have areas under the curve of around 0.8
units. The fact that no equations were possible for other DCs

Table 3. Predicted Probabilities by Eq 9 for the Available Best Selling Drugs

drug P drug P drug P drug P

amlodipine 0.62 enalapril 0.70 losartan 0.76 ranitidine 0.72
amphetamine 0.91 fenofibrate 0.89 memantine 0.93 risperidone 0.95
anastrazole 0.90 fentanyl 0.94 methylphenidate 0.89 ropinirole 0.89
aripiprazole 0.86 fexofenadine 0.42 nifedipine 0.78 rosiglitazone 0.91
bicalutamide 0.60 fluconazole 0.90 olanzapine 0.85 salmeterol 0.37
bosentan 0.67 gabapentin 0.58 omeprazole 0.87 sertraline 0.89
bupropion 0.82 gemcitabine 0.55 ondansetron 0.95 sildenafil 0.87
candesartan 0.65 imatinib 0.72 paclitaxel 0.22 sumatriptan 0.72
celecoxib 0.78 irbesartan 0.76 paroxetine 0.91 tacrolimus 0.56
ciprofloxacin 0.64 lamivudine 0.75 pioglitazone 0.90 topiramate 0.82
clarithromycin 0.25 lamotrigine 0.71 pramipexole 0.90 valproate 0.67
diclofenac 0.69 lansoprazole 0.91 pravastatin 0.33 vardenafil 0.87
dorzolamide 0.79 latanoprost 0.54 progesterone 0.97 venlafaxine 0.86
doxazosin 0.88 levetiracetam 0.76 quetiapine 0.82 zidovudine 0.56
duloxetine 0.86 lidocaine 0.78 raloxifene 0.66 zolpidem 0.94
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Table 4. Logistic Regression Expressions and Equations with Statistical Significance at the 95% Confidence Level or Higher To
Predict the Probability of a Compound Being a Drug of a Specific Disease Category Compared to Other Drugs

Intercept (Std. Err.) and Coefficients (Std. Err.)*Variables

disease category
(expression) median of deviance residuals

Mathew’s coefficient
(TP, TN, FP, FN)

accuracy (%) for correct prediction,
miss-prediction AUC

enrichment
(at 5%)

DC8 (eq 14) − + * + * − *NoC PSA molecular polarizability4.9(0.6) 0.4(0.2) 0.03(0.01) 0.23(0.08)

−0.21 0.39 (5, 343, 2,16) 95, 5 0.83 50

DC10 (eq 15)
Δ

+ * + * − * − * +

*

aromatic ring count aliphatic ring count NoC PSA

G MSA

2.4(0.9) 1.5(0.3) 0.8(0.2) 0.21(0.05) 0.029(0.005) 47.8(18.6)

/bind

−0.46 0.35 (45, 229, 26, 66) 74, 26 0.77 12.2



than those in Table 4 may be due to the small number of
members of each individual group in the data set and the
promiscuity of a large number of compounds. This may also be

due to the fact that most drugs are optimized for pharmaceutical
action and safety but are not perfectly optimized for disease
specificity. This is seen in the many side effects that drugs have,
which can sometimes be exploited for a new indication of a drug.
This may also speak of some disease categories being harder to
predict than others. A collection of typical class compounds for
the DCs is shown in Figure 7.
DC8 contains cancer treatment drugs. Some of these are

enzyme inhibitors, though many are receptor agonists or
antagonists. As such, a majority of these compounds are
moderately large and with a moderate amount of functionality
(e.g., compound tamoxifen, Figure 7). Equation 14 reflects this
with positive coefficients for the number of carbon atoms and for
PSA, balanced by a negative coefficient for molecular polar-
izability. The latter is a measure of the charge distribution within
a molecule and can be related to its solvation energy through
solvent/solute interactions, as well as being useful in describing
the lipophilicity (hydrophobicity) of compounds.87,88

Drugs that act on the nervous system (DC10) are generally
moderate in size and relatively hydrophobic (e.g., compound
diazepam, Figure 7). A large number of them act on the brain and
thus have an extra barrier that is relatively impermeable to cross.
Many contain the CNS active phenylethylamine substructure.
Equation 15 shows these effects in negative coefficients for the
number of carbons and PSA combined with positive and small
contributions from the number of aromatic or aliphatic rings as
well as for ΔGbind/MSA (which translates as favoring hydro-
phobic compounds).

Figure 6.ROC curves for eqs 14 (DC8, anti-neoplastics) and 15 (DC10,
nervous system agents) and random selection (diagonal line).

Figure 7. Typical compounds for specific disease categories.
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Nondrugs vs DC Drugs. A similar method to that employed
in the drugs vs nondrugs was employed but now comparing
nondrug compounds to drugs belonging to a particular DC.
Compounds belonging to more than one DC were removed. A
selection of the best statistically significant equations is shown in
Table 5, together with values from ROC plots shown in Figure 8.
The ROC plots in Figure 8 together with the AUC (higher

than 0.9 units) and enrichment values from Table 5 show a very
good retrieval of known drugs of particular DC as compared to
known nondrugs. This is also evident in the plots of the
distribution of values (line histograms) corresponding to the
predicted values according to the equations based on expressions
in Table 5 and shown in Figure 9.
The expressions in Table 5 are specific for each DC, i.e., they

are not shared with another DC and as such can help distinguish
drugs belonging to different disease types. The numbers of TP,
TN, FP, and FN and the plot distributions show good symmetry.
DC1 corresponds to alimentary tract and metabolism diseases.
From Table 5, eq 16 has positive coefficients for the number of

aromatic rings that combined with the negative signs for PSA and
ΔGbind/APSA (i.e., favoring small compounds) provides a
balanced correlation with the predicted outcome of classifying
a drug as belonging to DC1. An example compound in DC1 is
tolbutamide (Figure 7). DC2 contained only seven compounds,
and no selective, statistically significant regression equation was
found.
For DC3, small size and a moderate number of polar groups

are important to distinguish specificity for cardiovascular drugs as
seen in eq 17. One can observe this effect in the example of the
structure of fenofibrate (see Figure 7). The place of action of
these drugs is the heart and circulatory system, and as such, they
must reach their targets through several membranes. The
properties described in eq 17 (negative coefficient for Balaban
index, MSA, and number of aromatic atoms, i.e., favorable to
small molecules, and positive coefficient for logP, i.e., favoring
nonpolar compounds) are able to select compounds for this type
of therapeutics.

Table 5. Logistic Regression Expressions and Equations with Statistical Significance at the 95% Confidence Level or Higher To
Predict the Probability of a Compound Being a Drug of a Specific Disease Category Compared to Nondrugsa

Intercept (Std. Err.) and Coefficients (Std. Err.)*Variables

disease
category

median
of

dev. res.

Mathew’s
coefficient

(TP, TN, FP, FN)
for training and
validation data

sets

accuracy (%)
correct

prediction,
missprediction;
training and
validation sets AUC

enrichment
(at 5%)

DC1 (eq 16) Δ− + * − * − *aromatic ring count PSA G APSA3.2(1.5) 2.0(0.6) 0.02(0.01) 156(61) /bind

0.0 0.72 (28, 27, 5, 4) 86, 14; 81, 19 0.91 65
0.63 (7, 6, 2, 1)

DC2 No selective, statistically significant equation found

DC3 (eq 17) − * + * − * − *PBalaban index log MSA aromatic atom count5.9(1.6) 1.3(0.6) 0.9(0.2) 0.006(0.002) 0.17(0.07)

0.02 0.85 (57, 54, 6, 3) 92, 8; 91, 9 0.95 73
0.91 (10, 11, 0, 1)

DC4 No selective, statistically significant equation found.

DC5 (eq 18) − + * − * + *aromatic ring count PSA Wiener polarity0.5(1.3) 1.5(0.6) 0.07(0.02) 0.1(0.04)

−0.02 0.81 (24, 34, 3, 3) 91, 9; 89, 11 0.95 89
0.78 (8, 8, 1, 1)

DC6 No selective, statistically significant equation found.

DC7 (eq 19) + * − * − * + *ring count NoC PSA Wiener polarity3.4(1.4) 1.5(0.4) 0.4(0.2) 0.07(0.02) 0.2(0.09)

−0.00 0.86 (27, 27, 2, 2) 91, 9; −, − 0.95 79
DC8 No selective, statistically significant equation found.
DC9 No selective, statistically significant equation found.

DC10 (eq 20) − * − * + * − *log P PSA APSA donor count4.7(1) 0.6(0.2) 0.04(0.01) 0.01(0.01) 1.2(0.2)

0.05 0.86 (92, 88, 9, 5) 93, 7; 88, 12 0.97 92
0.77 (27, 26, 4, 3)

DC11 No selective, statistically significant equation found.

DC12 (eq 21)
Δ

− + * − × × * − −

*

− −aromatic ring count hyper Wiener index

G APSA

5.7(2.9) 4(1.2) 2.15 10 (9.7 10 ) 180.2(91.8)

/bind

4 5

0.01 0.81 (23, 24, 2, 3) 90, 10; 69, 31 0.97 84
0.39 (13, 9, 7, 3)

DC13 (eq 22) Δ− + * − * − *Plog PSA G NoC2.5(1.6) 0.9(0.3) 0.04(0.01) 6.5(2) /bind

0.01 0.91 (33, 32, 2, 1) 96, 4; 93,7 0.93 67
0.87 (14, 12, 2, 0)

DC14 (eq 23) Δ− * − *donor count G APSA0.3(1.4) 0.8(0.2) 104.8(51) /bind

−0.01 0.77 (19, 20, 2, 3) 89, 11; 81, 19 0.93 82
0.67 (18, 17, 4, 3)

aMedian of dev. res. = Median of deviance residuals. AUC = Area under the curve of ROC plots in Figure 8.
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A typical compound for DC4, dermatological agents is
clotrimazol (Figure 7). The drugs for this DC tend to be
hydrophobic because they are applied directly to the skin, and
transdermal absorption would be important. However, these
properties are not exclusive to this DC, and the equations found
for this DC were also applicable to other DCs (hence, none are
shown in Table 5). This can be due to the fact that many
dermatological drugs also belong to other DCs (such as
erithromycin, also a topical antibiotic) and are therefore less
specific.
DC5 contains genito-urinary drugs and many act on receptors

that are cell membrane bound. Reaching them imposes a balance
in the chemical properties of these drugs. The number of
aromatic rings, Wiener polarity, and PSA are important as shown
by their respectively positive, positive, and negative coefficients
in eq 18, as well as the structure of vardenafil (Figure 7). Wiener
polarity measures the number of pairs of graph vertices and
relates to the flexibility of acyclic structures and their steric
effects.88

Hydrocortisone (Figure 7) is a typical example compound for
DC6, Systemic hormonal drugs. Most compounds in this group
have a similar shape (flat) and several rings. These compounds
bind to receptors that have similar binding pockets, and thus,
they possess relatively similar chemical structure properties.
However, they also belong to several DCs, and so no selective,
statistically significant equations were found for this DC. They
also typically possess a variety of side effects such as is the case
with glucocorticoids.
Equation 19 presents an interesting case. DC7 contains anti-

infectives, and many of them are relatively large compounds but
with some functionality. Accordingly, eq 19 has a positive
coefficient for ring count and Wiener polarity and at the same
time a negative coefficient for PSA. Thus, compounds in this DC
are distinguished by their size and limited functionality, which are
useful properties due to their mainly enzyme (transpeptidases,
HIV protease, lanosterol 14 α-demethylase, etc.) inhibitor
character (e.g., compound indinavir, Figure 7). No drugs in the
validation set belonged to this DC.
DC8 contains anticancer compounds. Given the wide variety

of their molecular targets and sometimes their lack of organ
specificity in their mechanism of action, they are very varied. No

selective, statistically significant regression equations were found
for this DC vs nondrug comparison (though there was an
equation for inter-DC comparison as seen above) nor for
musculo-skeletal drugs (DC9) nor antiparasitics (DC11).
Figures 8 and 9 show the good distinction between drugs for

DC10 and nondrugs. This is also reflected in the calculated
values for the probabilities of the available best selling drugs for
eq20 shown in Table 6, where all of the available best selling
drugs for this DC scored well.
DC12 (respiratory system) drugs tend to be of moderate size

and have at least one aromatic ring (e.g., fexofenadine, Figure 7),
which is reflected in eq 21, with a positive coefficient for number
of aromatic rings balanced by negative coefficients for hyper-
Wiener index and ΔGbind/APSA. The hyper-Wiener index is a
measure of the “expandedness” of a chemical graph of a molecule,
more sensitive than Wiener index for expanded graphs.88

Different shaped compounds are characteristic for sensory
organ drugs (DC13, see brinzolamide, Figure 7), given the
different target organs they act upon. Equation 22 favors
hydrophobic compounds.
DC14 contains various drugs, i.e., drugs that do not belong to

other disease categories. Their chemical structures are quite
varied, as expected (see compound picrotoxin, Figure 7).
However, there were equations found for this group, specifically,
eq 23 has negative coefficients for number of donors and for
ΔGbind/APSA, which would act to reduce in general the size of
the compounds. Although this function can be viewed to apply to
all drugs, the equation was specific for this DC. Compounds in
DC14 are indeed varied in their structure and mechanism.
Equation 23 does provide a score, one that is based on relatively
general factors such as donor count, binding energy, and apolar
surface area, which in principle characterize general drug-likeness
as opposed to specific DC characteristics. It should be noted that
eqs 14 and 15 were generated considering drugs of different DCs
vs DC8 and DC10, respectively. However, eq 23 for DC 14 was
generated using DC14 drugs vs nondrugs. In that respect, eqs 14
and 15 are more discriminating between specific DCs than eq 23.
In our previous study, we found that drugs and their disease

categories could be charted and ranges established on the basis of
their molecular properties and score plots using PCA analysis.62

The present work shows that drugs can be distinguished from
nondrugs as well as from drugs for different diseases or organs
with statistical significance through probability based on
multivariate logistic regression analysis.
The most difficult DCs to assign unambiguously are perhaps

DC7 (anti-infectives) and DC8 (anti-neoplastic), probably due
to their action in many different organs or locations in the body,
and therefore, overlap may occur with other DCs. The other DCs
appear to be better localized. This also shows that certain targets
of drug actions, for example, estrogen receptors or other
receptors, may be located in different degrees of expression and
of subtypes in different organs or parts of the body. Classifying
compounds according to their chemical molecular properties as
we have done may allow distinguishing the chemical space
available to separate receptors at different target organs or tissues.
Alternatively, in some occasions, if the chemical space available
for a certain disease overlaps with another DC, it will strongly
suggest the possibility of multiple effects or indications for a
particular drug. For example, raloxifene is a genito-urinary system
and sex hormone disease category (DC5) drug that shares the
same estrogen receptor and mechanism as tamoxifen, an anti-
neoplastic (endocrine therapy, DC8) drug. Another option of
looking for specificity among DCs is taking into account

Figure 8. ROC curves for eqs 16−23 and random selection (diagonal
line).
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descriptors that are unique to a specific DC, such as molecular
polarizability, which is unique to eq 14 for DC8 (anti-neoplastic
agents) or hyper-Wiener index, which is unique to eq 21 for
DC12 (respiratory system).

Further Tests. After the completion of the regression study
and validation tests, new compounds were obtained to further
test the equations produced before. Experimentally verified and
in-use drug compounds were found, mostly due to them not

Figure 9. (a,b) Distribution of predicted probabilities for drugs belonging to specific disease categories and nondrugs.
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having binding data available at the time when the data sets were
collected or having been approved since. These 224 compounds
were able to be correctly classified into DCs 3, 5, 7, and 10,
according to eqs 17−20, respectively, and with good accuracy
(reported as sensitivity, see eq 24, also named “recall” in some
sources) of at least 70% or higher. The results are shown in Table
7, with the compound names and associated DC shown in Table
S1 in the Supporting Information.

= +Sensitivity TP/(TP FN) (24)

Given that predicting drug-likeness is a challenging task as well
as a constantly transforming environment due to changes in
legislation and drug approval and removal, as well as the changing
nature of candidate compounds over time, achieving a degree of
accuracy of at least 70% can help in better defining quantitative
and gradual measures of drug-likeness. Through these equations
and in combination with others, better profiling of drug libraries
may be possible. One of the possible desirable goals would be the
development of organ-specific chemical libraries. The regression
expressions obtained in the present work have been coded and
are available for use at http://hermes.chem.ut.ee/~alfx/
druglogit.html.

■ CONCLUSIONS
The method described and validated allows calculating a
predicted probability of classification as drug or nondrug for a
compound on the basis of simple, readily available (or able to be
calculated on-the-fly) properties. A variety of logistic regression
equations are presented, from one term to the combination of up
to five terms, and their implementation are straightforward to
profiling compound libraries and selecting compounds with
desired outcome qualities, such as organ-specific chemical
libraries. The small amount of terms in the regression expressions
and equations allows easy understanding of the drugs’ properties
based on their physicochemical attributes. In addition, testing for

collinearity and removal of correlated terms prevented over-
fitting of variables to observables in all regressions.
A selection of the equations allows classifying the disease

category of a compound. They are rationalized based on the
different mechanism of action, administration mode, and target
organs of different disease categories. It is envisioned that the
method described here can be further extended to particular drug
targets in order to achieve even finer specificity.
Sometimes a drug can be found by comparing ligand similarity

to known active compounds (for example, using ligand-based
design) and/or its interactions with its therapeutically relevant
biomolecular target (enzyme, receptor, nucleic acid, etc., using,
for example, pharmacophores or structure-based design90).
However, in some cases the same receptor or enzyme may be
located in different tissues, and therefore, an organ-based
specificity would be desirable in order to better target the active
compound. The regression functions presented here can be used
in conjunction to other drug discovery and design techniques in
order to further compartmentalize drug action. They can be
extended or substituted using different molecular properties and
can be applied in a similar manner to different problems in
molecular and drug design. Additionally, the filters can be applied
successively or in consensus in order to increase desired features,
as well as used in conjunction with other filters to combine drug
or DC drug features with others such as oral-bioavailability or
lead-likeness.
The near-misses of the regression functions allowed

comprehending the behavior of compounds based on their
chemical properties and suggesting routes for compound
modification. The regression functions also allow for a broad
view of disease categories on the basis of chemical features.
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DC, disease category; LR, logistic regression; NHA, number of
heavy atoms; NoC, number of carbons; LE, ligand efficiency
indices (also called binding efficiencies); MSA, molecular surface

Table 6. Predicted Probabilities by Eq 20 for Best Selling
Drugs in Disease Category 10, Nervous System

drug PDC10 drug PDC10

amphetamine 0.93 paroxetine 0.96
aripiprazole 0.95 pramipexole 0.87
bupropion 0.95 quetiapine 0.78
duloxetine 0.89 risperidone 0.97
fentanyl 0.99 ropinirole 0.97
gabapentin 0.80 sertraline 0.93
lamotrigine 0.59 sumatriptan 0.77
levetiracetam 0.96 topiramate 0.84
lidocaine 0.97 valproate 0.84
memantine 0.89 venlafaxine 0.94
olanzapine 0.93 zolpidem 0.98

Table 7. Success Rates for Classifying Additional Compounds
into Specific DCs According to the Developed Equations

disease category
(equation)

True
Positives

False
Negatives

total
number

accuracy %
(as

sensitivity)

DC3 (eq 17) 66 4 70 94
DC5 (eq 18) 17 4 21 81
DC7 (eq 19) 42 18 60 70
DC10 (eq 20) 60 13 73 82
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area; PSA, polar surface area; APSA, apolar surface area; ATC,
Anatomical Therapeutic Chemical Classification
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(25) Brüstle, M.; Beck, B.; Schindler, T.; King, W.; Mitchell, T.; Clark,
T. Descriptors, physical properties, and drug-likeness. J. Med. Chem.
2002, 45, 3345−3355.
(26) Lee, M. L.; Schneider, G. Scaffold architecture and pharmaco-
phoric properties of natural products and trade drugs: Application in the
design of natural product-based combinatorial libraries. J. Comb. Chem.
2001, 3, 284−289.
(27) Wenlock, M. C.; Austin, R. P.; Barton, P.; Davis, A. M.; Leeson, P.
D. A comparison of physicochemical properties of development and
marketed oral drugs. J. Med. Chem. 2003, 46, 1250−1256.
(28) Leeson, P. D.; Springthorpe, B. The influence of drug-like
concepts on decision-making in medicinal chemistry. Nat. Rev. Drug
Discovery 2007, 6, 881−890.
(29) Tyrchan, C.; Blomberg, N.; Engkvist, O.; Kogej, T.; Muresan, S.
Physicochemical property profiles of marketed drugs, clinical
candidates, and bioactive compounds. Bioorg, Med. Chem. Lett. 2009,
19, 6943−6947.
(30) Oprea, T. I.; Gottfries, J. Chemography: The art of navigating
chemical space. J. Comb. Chem. 2001, 3, 137−166.
(31) Abad-Zapatero, C.; Perisic, O.; Wass, J.; Bento, A. P.; Overington,
J.; Al-Lazikani, B.; Johnson, M. E. Ligand efficiency indices for an
effective mapping of chemico-biological space: the concept of an atlas-
like representation. Drug Discovery Today 2010, 15, 804−811.
(32) Dobson, C. M. Chemical space and biology. Nature 2004, 432,
824−828.
(33) Vieth, M.; Sutherland, J. J. Dependence of molecular properties
on proteomic family for marketed oral drugs. J. Med. Chem. 2006, 49,
3451−3453.
(34) Hopkins, A. L.; Paolini, G. V. Chemogenomics in Drug Discovery
− The Druggable Genome and Target Class Properties. In
Comprehensive Medicinal Chemistry II, 4 (Computer-Assisted Drug
Design); Mason, J. S., Ed.; Elsevier: Amsterdam, The Netherlands,
2007; pp 421−433.
(35) Mestres, J.; Martín-Couce, L.; Gregori-Puigjane,́ E.; Cases, M.;
Boyer, S. Ligand-based approach to in silico pharmacology: Nuclear
receptor profiling. J. Chem. Inf. Model. 2006, 46, 2725−2736.
(36) Sutherland, J. J.; Higgs, R. E.; Watson, I.; Vieth, M. Chemical
fragments as foundations for understanding target space and activity
prediction. J. Med. Chem. 2008, 51, 2689−2700.
(37) Sprous, D. G.; Palmer, K.; Swanson, J. T.; Lawless, M. QSAR in
the pharmaceutical research setting: QSAR models for broad, large
problems. Curr. Top. Med. Chem. 2010, 10, 619−637.
(38) Jacob, L.; Hoffman, B.; Stoven, V.; Vert, J. P. Virtual screening of
GPCRs: An in silico chemogenomics approach. BMC Bioinformatics
2008, 9, 363.
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