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Abstract We have performed a multivariate logistic
regression analysis to establish a statistical correlation
between the structural properties of water molecules in
the binding site of a free protein crystal structure, with the
probability of observing the water molecules in the same
location in the crystal structure of the ligand-complexed
form. The temperature B-factor, the solvent-contact
surface area, the total hydrogen bond energy and the
number of protein–water contacts were found to discrim-
inate between bound and displaceable water molecules in
the best regression functions obtained. These functions
may be used to identify those bound water molecules that
should be included in structure-based drug design and
ligand docking algorithms.

Keywords Protein hydration · Drug design · Bound water
molecules · Multivariate logistic regression

Introduction

Considerable effort has historically and recently been
directed towards understanding and predicting the water
molecules observed in protein–ligand complexes. This
introduction mentions a few approaches to biomolecular
hydration, both experimental and computational. We
present the case for our use of statistical methods of
analyses of collections of protein structures in order to be
able to compare with other methods and show how this
study and the WaterScore program work reasonably well

in a wide variety of biomolecular systems and hydration
conditions.

Protein crystal structures reveal that water molecules
often engage in hydrogen bonding with acceptor and
donor groups on the protein surface, and sometimes also
with other water molecules which themselves may form
hydrogen bonds to the protein. [1] The latter are often
called the first hydration shell of a protein. Water
molecules may also interact with both the protein and a
bound ligand, mediating polar interactions between them.
These interactions can help to form complex hydrogen-
bond networks that are further stabilized through coop-
erativity effects [2] and can have a role in biomolecular
structure, function, recognition and specificity. [3, 4, 5, 6]

It has been observed that certain water molecules
occupy the same positions in crystal structures of the
same protein under different crystallographic conditions,
[7] and/or with different ligands, [8, 9, 10] or in a set of
structurally related proteins. [4, 11, 12, 13, 14] Further-
more, water molecules found on protein surfaces and
mediating interactions with ligands have been observed to
have characteristic structural properties, such as binding
in grooves on the protein surface [15] and making on
average three hydrogen bonds with the protein. [16]

Crystal packing effects might be responsible for
overstabilizing a protein’s hydration structure compared
to the physiological aqueous environment, [17] or for
changing the location of surface water molecules. [12, 18]
The determination of conserved water sites in X-ray
structure determinations also varies as the environment of
the protein changes (temperature, solvent conditions, pH,
hydration level). [19] However, as the resolution of
protein crystal structures improves, more and better-
defined structured water sites are being found, [20] as had
been predicted earlier. [21] It has been suggested that the
hydration sites observed in sets of multiple crystal
structures of a protein actually represent the configura-
tional space sampled by water molecules of that protein,
with the equilibrium between different hydration sites
shifting according to the environmental conditions. [19]
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Crystallographic water molecules also seem to be
major contributors to the energetics of protein–ligand and
protein–protein complexes. In antigen–antibody complex-
es, for example, water molecules are seen to provide an
energy-regulatory function by means of the formation of
structurally well-defined hydrogen bonds that can provide
specificity amongst ligands [22] and a significant change
in the conformational entropy of the system. [23] An
analysis of protein–protein interactions and the effect of
amino acid mutations on their energetics has revealed that
the observed differences in binding affinity are consistent
with the changes in binding energy from the direct contact
between each subunit of the complex and indirect changes
due to the release of water molecules near the mutation
site. [24] Failure to account for the effect of these water
molecules can result in an underestimation of the
calculated binding affinities.

Free energy simulations have been used to characterize
the energetics of crystallographic water molecules. A
threshold value of �50 kJ mol�1 has been found for
distinguishing hydrated and empty sites of buried struc-
tural water molecules. [25] However, these buried water
molecules can be considered to be an integral part of the
protein structure and differ from water molecules medi-
ating protein–ligand interactions in that they have a much
slower exchange rate with the bulk solvent and are not
accessible to an incoming ligand.

Such simulations have also been used to study the
binding site of cytochrome P450cam. The protein com-
plex with an inhibitor contains one crystallographically
well-defined water molecule, which mediates and stabi-
lizes the interaction by nearly –12 kJ mol�1. However, the
calculated free energy difference between the mono-
hydrated and non-hydrated (as observed in the crystal
structure) states of the complex with camphor (natural
substrate) was found to favor the non-hydrated state by
nearly �16 kJ mol�1. [26] In another study, the hydration
of the empty binding site of P450cam was calculated to be
more energetically favorable with five to six water
molecules than with the maximum possible of ten water
molecules. [27] The authors later mutated the bound
camphor to six water molecules, which hydrated the
binding site fully, estimating the associated free energy of
binding of camphor to be just over –29 kJ mol�1. [28]
These calculations reveal the crucial role that water
molecules in the binding site of a protein can have in
determining the energetics of ligand binding.

From the perspective of drug design, the concept of
replacing and mimicking such crystallographically deter-
mined bound water molecules has become widespread.
[29] The classic example in drug design is that of the
active site of HIV protease, where replacement of a water
molecule by a carbonyl group on a cyclic urea inhibitor
contributed to an increase in the entropy by releasing the
ordered bound water molecule. [30] However, the
replacement of a bound water molecule by a chemical
group on a ligand does not necessarily result in a decrease
in the free energy of binding. [31]

Implicit hydration has explained the observed selec-
tivity of ketoprofen and two structural analogues for two
cyclooxygenase isozymes. [32] The water structure in the
interior of the active sites is flexible and can easily
accommodate changes in ligand structure as well as guide
specificity. There are also cases where natural substrates
[33] and designed inhibitors [34] have been shown to be
able to include and/or conserve water-mediated contacts,
instead of trivially replacing the water molecules. These
observations suggest that a proper evaluation of the free
energy changes involved in protein–water–ligand inter-
actions may be needed in order to rationalize whether the
replacement of a water molecule by an incoming ligand is
advantageous energetically.

It becomes clear that the first step when deciding
whether to consider crystallographically determined water
molecules is to choose which water molecules are
relevant. Attempts have been made to predict such
ordered hydration sites by modular neural networks using
protein sequence information. [35] A genetic algorithm
has been reported to predict polar ligand interactions as
well as those interactions mediated by conserved water
molecules in proteins. [36] The temperature B-factors of
water molecules, the number of protein–water hydrogen
bonds and the density and hydrophilicity of neighboring
protein atoms were used to discriminate between bound
and displaced water molecules. This effect was found to
be independent of the chemical nature of the ligand, while
the protein microenvironment of each water molecule
seemed to be the dominant influence.

A cluster analysis of consensus water sites in thrombin
and trypsin has shown how these sites are conserved
amongst serine proteases and how they contribute to
ligand specificity. [5] It was found that highly conserved
water micro-clusters generally had more neighboring
protein atoms, were in a more hydrophilic environment,
made more hydrogen bonds to the protein and were also
less mobile. Water sites that could be identified as
conserved in the thrombin structures were not identified
as such in the trypsin structures, and vice versa, providing
a list of water sites that might contribute to ligand
discrimination. There were also significant overlaps
between the thrombin and the trypsin conserved-water
sites, likely to be associated with ligand selectivity.

Finally, empirical relationships between structural
properties of the protein–solvent interface have been
found by statistical analyses of crystal structure surveys.
A correlation between occupancy and water temperature
B-factors in protein crystal structures was found, [37] as
well as a correlation between accessibility to internal
cavities and ligand-binding sites with triads of atoms of
comparable B-factors. [38] An estimate of the number of
water molecules that can be expected in a protein crystal
structure has been reported, [39] where a multivariate
linear regression analysis was carried out to model the
relative number of water molecules per number of protein
atoms (roughly one water molecule per residue) in terms
of several structural properties.
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Water molecules bridging the interaction between a
protein and a ligand can be included in drug design and
molecular modeling strategies in different ways. The
placing of explicit water molecules at favorable positions
in the protein–ligand interface has been shown to guide
and improve the docking of the ligand in FLEX-X, a
program for protein–ligand docking with an incremental
construction approach. [40] The water molecules included
in the binding site interacted with fragments of the ligand
being constructed if they were able to form additional
hydrogen bonds with the ligand. Consequently, the steric
constraints imposed by these water molecules as well as
the geometry of the hydrogen bonds were used to
optimize the ligand binding mode. This is an example
of how water molecules may influence the geometry and
free energy landscape of a ligand-binding site. At the
same time, a strategy for the incorporation of water
molecules inside a ligand-binding site into a three-
dimensional quantitative structure–activity relationship
(QSAR) analysis has been reported. [41] Such a proce-
dure included crystallographic water molecules as part of
the ligand structure and the results showed an improve-
ment in the predictive ability of the models.

The knowledge of the effects that explicit water
molecules can have on ligand binding and specificity
should be considered in drug design strategies for a better
evaluation of protein–water–ligand interactions, as well
as the incorporation of new chemical features into the
ligands being generated. Ligands might need lower
numbers of polar or charged groups (hydrophilic contacts
would be mediated through hydrogen bonds formed by
the water molecules present), as well as smaller molecular
weights as fewer hydrophobic contacts would be neces-
sary. These effects arise from the observation that, when
databases of dissimilar molecules are screened for
complementarity to receptors of known structures, failure
to consider ligand solvation often leads to putative ligands
that are too highly charged or too large because of an
overestimation of hydrophilic and hydrophobic protein–
ligand interactions, respectively. [42]

Water molecules found in a protein crystal structure
can be considered as part of the binding site of a protein
where de novo assembly of a ligand will take place, the
docking of a ligand will be carried out, or the magnitude
of electrostatic, hydrogen-bonding and hydrophobic in-
teractions between a ligand and a protein will be
computed. Furthermore, water molecules can be consid-
ered to be mobile in the way they behave dynamically in
their microenvironment, or fixed at certain locations
where they appear to be conserved. The method described
in this paper has been applied to selecting water
molecules for de novo ligand design, where their presence
modulated the chemical diversity of the designed ligands
through the hydrogen-bonding and steric constraints they
imposed. [43]

The present work deals with a strategy for incorporat-
ing crystallographically observed water molecules into
molecular modeling methods, by considering their simple
structural properties and determining their statistical

significance. We have searched for a relationship between
the structural properties of those water molecules ob-
served in the same positions between different X-ray
crystal structures of the same protein, in an attempt to
predict the probability of a water molecule being bound to
the protein surface at the same hydration site. Our aim has
thus been to determine conserved water molecule posi-
tions that can be used to modify the shape and chemical
properties of the binding site of a protein. This in turn can
allow for a more realistic scoring of protein–ligand
interactions, a more accurate determination of ligand
binding modes and the modulation of chemical diversity
in structure-based drug design.

Materials and methods

The proteins that were initially selected for both the calibration and
testing sets (Tables 1 and 4, respectively) were those that have
crystal structures for both their free and complex forms (with one or
more ligands). Only crystal structures with a resolution better than
2.5 � were considered. Furthermore, the proteins were chosen so as
to minimize the effects on the hydration structure of any
conformational changes in the binding site. Consequently, only
those proteins that showed little or no geometric variation around
their binding sites were considered. The crystal structures cover
different levels of hydration: from fully hydrated binding sites
(such as penicillopepsin, shown in Fig. 1 in Results and discussion)
to binding sites with few water molecules (such as the lipid binding
protein). The binding sites of the proteins chosen exhibit different
shapes and sizes, as well as different types of bound ligands. There
are several proteins that have small to medium-sized well-defined
binding sites (such as cutinase, xylose isomerase, galactose/glucose
binding protein, proteinase A, Rhizopuspepsin, cholesterol oxidase
and dihydrofolate reductase), others that have large open binding
sites (such as penicillopepsin, RNase A, thermitase and lipid
binding protein) and others that have superficial ill-defined binding
sites (such as actinidin, and the Fv fragment of mouse monoclonal
antibody D1.3).

The selected protein data sets thus cover a range of typical
examples of protein binding sites, to account for the different
conditions that are likely to be found in protein–ligand crystal
structures. Table 1 contains the names and other information for the
25 protein pairs analyzed, as well as counts for the different classes
of water molecules. Some of the proteins analyzed had more than
one complex with a number of ligands, and these were treated
independently. For example, in the case of cutinase we analyzed a
crystal structure of the free protein (1cex) and two crystal structures
of complexes with two different ligands (1xzl and 1xzm). In these
cases, the same atoms have been used to define the binding sites of
the free enzyme and the several complexes. Water molecules
excluded by one ligand in one of the complexes but not in another
complex were not included in the analysis due to the statistical
noise these would introduce (they would contribute with the same
property values to both the bound waters category and also to the
displaced water molecules category which we are trying to
separate). Table 2 contains a data set for the evaluation of the
performance of WaterScore. It has previously been used elsewhere
by a related study for the testing of prediction of conservation of
water molecules. [36]

The structural properties of water molecules in the free
(uncomplexed) forms of the proteins which were analyzed were
the temperature B-factors, the hydrogen-bonding energies of the
water–protein and water–water contacts, the solvent-accessible
(SASA) and solvent-contact surface-areas (SCSA) and the number
of protein atomic contacts of each water molecule (NPAC). The
temperature B-factors of the neighboring protein atoms and their
corresponding SASA were also evaluated.
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Temperature B-factors (Bf)

The isotropic temperature B-factors provide an estimate
of the atomic mobility within a crystal structure through
the calculation of the mean displacement Ū of an atom by
the relationship B=8p2Ū2. Consequently, water molecules
with high B-factors are less tightly bound to the protein
surface as they are more mobile. The B-factors of water
molecules and neighboring protein atoms were read
directly from the PDB files. [44] The module PRO-

CHECK in the program WHATIF [45] was used to
investigate the quality of the crystal structure and to
ensure that the B-factors were not unrealistically high or
low.

Hydrogen-bond energies (WHBE)

The module HB2NET in the program WHATIF [45] was
used to optimize the hydrogen atom positions of both the

Table 1 Protein–water data calibration set for WaterScore

Protein pairs
(free/complex PDB
codes)

Protein name Ligand name Resolution
(�)

Bound
waters

Displaced
waters

1cex/(1xzl, 1xzm) Cutinase N-Hexylphosphonate-2-ethyl ester 1.0, 1.69, 1.75 2 1

1xyz/1xyb Xylose isomerase Xylose 1.81, 1.96 3 0

3app/(1ppk, 1ppm) Penicillopepsina Statine derivative (1ppk), CBZ–Ala–Ala–
Leu(P)–(O)Phe–OMe (1ppm)

1.8, 1.8, 1.7 4 1

1gcg/(2gbp, 3gbp) Galactose/glucose
binding protein

d-Glucose 1.9, 1.9, 2.4 3 0

2sga/(3sga, 4sga, 5sga) Proteinase A (serine
proteinase)

Phenyl alaninal, ACE–Pro–Ala–Pro–Phe,
ACE–Pro–Ala–Pro–Tyr

1.5, 1.8, 1.8,
1.8

2 0

2apr/3apr Rhizopuspepsin
(aspartic proteinase)

Reduced phenyl alaninal 1.8, 1.8 2 0

2act/1aec Actinidin 2 ([N-(l-3-trans-Carboxyoxirane-2-
carbonyl)-l-leucil]-3 amido(4-guanido)
butane)

1.7, 1.86 2 0

3dni/2dnj DNase I DNA fragment 2.0, 2.0 2 0

3cox/1coy Cholesterol oxidase Dehydroisoandrosterone 1.8, 1.8 9 1

1rbx/(1eow, 1rar, 1ras,
1rnc, 1rca, 1rbw)

Rnase Ab Uridylyl(2’,5’) guanosine (non-produc-
tive binding), acetylaminoethyl-naphtyl-
amine sulfonate, citidylyl-2’,5’-phospho-
ryl guanosine, deoxycytidylyl-3’,
5’-guanosine, guanidinium.

1.69, 2.0, 1.9,
1.7, 1.5, 1.9,
1.69

2 1

1thm/2tec Thermitase Eglin-C 1.37, 1.98 0 1

1lib/1lic Lipid binding protein Hexadecanesulphonic acid 1.7, 1.6 0 1

1vfa/1vfb Fv fragment of mouse
monoclonal antibody
D1.3

Hen egg lysozyme 1.8, 1.8 0 2

5dfr/(6dfr, 7dfr) Dihydrofolate
reductase

NADP+, NADP++folate 2.3, 2.4, 2.5 0 1

a See Fig. 1
b See Fig. 2

Table 2 Testing set (cf. [36]) for WaterScore

Protein (free/complex PDB
codes)

Ligand name Resolution
(�)

Bound waters
(correctly
predicted/total)

Displaced waters
(correctly
predicted/total)

Waters removed
by clashes (with
protein/ with ligand)

Cyclodextrin glycosyl-
transferase (1cgt/1cgu)

Glucose 2.0, 2.5 10/13 1/2 9 (4)

Trp repressor, DNA-binding
regulatory protein (2wrp/1tro)

Operator 1.65, 1.9 3/4 3/3 9 (1)

Concanavalin-A (2ctv/5cna) a-Methyl-
d-mannopyranoside

1.95, 2.0 0/3 3/3 7 (3)

Dihydrofolate reductase
(1dr2/1dr3)

NADP++biopterin 2.3, 2.3 9/9 2/9 0 (2)
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protein and the water molecules in each crystal structure.
The method scores hydrogen bonds using a special force
field developed from a database of accurately determined
small molecule structures. [46] Hydrogen bonds are given
a score between 0 and 1, where 1 represents an energy
value of 25 kJ mol�1 for an ideal (strong) hydrogen bond.
The score for a particular hydrogen bond is determined
from the donor/acceptor types, the hydrogen-bond donor–
acceptor distance, the hydrogen-bond angle and the
hydrogen-bond distance. The overall hydrogen-bond
energy of the protein and water molecules is optimized
iteratively by searching for the best possible position for
all the hydrogen atoms simultaneously; this also takes into
account the cooperativity affecting chains and networks
of hydrogen bonds. During the optimization procedure,
histidine, asparagine and glutamine side-chains are
allowed to flip 180�, as crystallographic determinations
cannot distinguish between the two rotamers. The total
hydrogen-bond energy of a water molecule (WHBE) was
then calculated as the sum of the energies of all water–
protein and water–water hydrogen bonds. In the case of
water–water hydrogen bonds, these were only considered
when both water molecules involved were retained in the
two crystal structures being compared.

Solvent-accessible surface-area (SASA)

The SASA for each water molecule was computed using
the program NACCESS 2.1.1, [47] which calculates the
atomic accessible surface defined by rolling a probe of a
given size around the van der Waals surface and
following the coordinates of the center of the probe.
[48] This is a measure of the accessibility of a water
molecule to the outer bulk aqueous environment. Less
accessible water molecules are located in deeper
crevices or grooves on the protein surface. The radius
of the rolling probe used was 1.2 � (cf. 1.4 � is the
radius of a water molecule), which has been used
elsewhere for the exploration of protein surfaces [16]
(cf. 1.25 � [47]). The SCSA, in which the coordinates on
the surface of the probe (rather than its center) are taken,
was also measured. The SASA and SCSA of protein
atoms in contact with a given water molecule were also
computed.

Number of protein atomic contacts (NPAC)

A cutoff of 3.5 � from the center of each water molecule
was used to determine the number of atomic contacts with
protein atoms. This is related to the local atomic density
and to the local van der Waals interactions between a
water molecule and the protein surface.

Since we were only interested in those water molecules
residing in the binding sites of the proteins considered, we
used a cutoff distance of 7.0 � from any ligand atom to
extract the binding sites. Water molecules within 3.5 � of
the protein atoms in the binding sites were also extracted.

The module CHKWAT in WHATIF [45] was used to
remove any water molecules that had coordinates too
close to a non-water symmetry-related atom. The binding
sites of the two proteins being considered were then
superimposed by minimizing the atomic root mean square
deviation (RMSD). Once the two binding sites and
corresponding water molecules were in the same frame
of reference, a cutoff of 0.5 � was found to be the
optimum for matching water molecules. If more than one
water molecule was found to match the reference
position, the one that was closest was then selected.
Water molecules in the free form of the protein were then
classified as displaced if they could not be matched with
another water molecule in the complex form of the
protein, and bound if they were matched successfully.
Care was taken to avoid redundancy in the matching of
water molecules, and a visual inspection was carried out
in some cases to verify this.

An important difference between our approach and
that of other authors [5, 36] is that water molecules that
were expelled from the binding site due to steric
interactions with a bound ligand were not included in
our category of displaced water molecules. These water
molecules are identified by superimposing the ligand of
the complex form of a protein onto the free form of the
same protein. Any water molecule that clashes with the
ligand was therefore assumed to have been sterically
displaced by the ligand upon binding. This procedure
retained only water molecules in the complex form of the
protein that could be classified as bound after ligand
binding had taken place. Otherwise, there would have
been an uncertainty as to which category the expelled
water molecules belonged to, since it would not be
possible to decide whether they would have been non-
sterically displaced or not by a ligand of a different shape
and/or size. Those water molecules displaced by steric
influences (or clashes) with the ligand or protein cannot
be included in the statistical analysis because they are not
exhibiting their behavior as they would in normal
circumstances, that is, without steric clashes.

Multivariate statistical analysis

A multivariate logistic statistical analysis of the structural
properties of water molecules described above was
carried using the program Matlab. [49] This enabled us
to generate a correlation model to discriminate water
molecules, some into a “displaceable” class (likely to be
lost upon ligand binding, also called “non-conserved”),
and others into “bound” class (likely to remain bound to
the protein upon ligand binding, also called “conserved”).
A logistic regression procedure was used because of its
ability to provide an estimate of the probability of such
discrimination in the form of the response or dependent
variable. The regression statistics are principally the Gm
value, which can be tested against a c2 distribution
function for statistical significance; and the RL

2 value,
which determines how well the estimated response

176



variable is predicted by the correlation between the
various independent variables. A more detailed descrip-
tion of the multivariate logistic regression method can be
found in the Appendix.

Results and discussion

Water molecules that were successfully matched and
classified as bound, were coded as 1, whilst all others
were classified as displaced and coded as 0, for the
purposes of the dependent (response) variable in the
statistically-fitted models. The total number of water
molecules considered was 40. There were a total of 30
bound water molecules (coded 1), with one outlier (this
had a value that deviated more than three standard
deviations from the mean), and with a fraction of 0.7692
of the total sample. There were a total of nine displaced
water molecules (coded 0), with no outliers, and with a
fraction of 0.2308 of the total sample.

Figure 1 shows the binding site of penicillopepsin
(3app) with its crystallographically determined water
molecules and a superimposed ligand (from the com-
plexed structure 1ppk). It can be seen that the ligand
occupies the positions where many of the water molecules
in the free form of the protein lie (shown in cyan). We
have considered such water molecules as having been
sterically displaced by the ligand in the complexed form
of the protein. Two water molecules were seen not to have
any hydrogen bonds with the protein surface (shown in
white), and were therefore excluded from our analysis,
because they lack the protein–water properties that we
considered in this study. Two bound water molecules
(shown in blue, coded 1), appearing in both the free and
the complexed forms of the protein, bridge the interaction
between the ligand and the protein. A single displaced
water molecule (shown in yellow, coded 0) was observed
in the free form of the protein, but could not be matched
in the complexed form even though there are no steric
clashes with the ligand.

Figure 2 shows another example taken from the protein
data set that we analyzed. In this case, the binding site of
RNase A (1rbx) with its crystallographically determined
water molecules and several superimposed ligands are
shown. As before, the ligand occupies the positions of
some of the water molecules in the free form of the
protein, while others are retained (bound) and one is
displaced (not by steric clashes with any of the ligands).

The above two proteins exemplify the fact that we
observed no obvious visual pattern for the location of
either bound or displaceable water molecules. It was not
necessarily true that bound water molecules were “sand-
wiched” between the ligand and the protein while
displaceable water molecules were located on the surface
of the binding site. It becomes clear that a quantitative
analysis of a number of structural properties of water
molecules is necessary to model their behavior upon
ligand binding.

Table 3 shows the means and standard deviations for
all the properties of bound and displaced water molecules

Fig. 1 The binding site (thin sticks) of penicillopepsin (3app) with
its crystallographically determined water molecules (spheres) and
superimposed ligand (in thick sticks, from complexed structure
1ppk). Water molecules sterically displaced by the ligand upon
complexation are shown in cyan. Bound water molecules are shown
in blue. Displaced water molecules are shown in yellow. Water
molecules removed from the analysis due to a lack of hydrogen
bonds to the protein are shown in white. WaterScore correctly
predicted waters in blue as Probability=1 to remain bound and
waters in yellow as Probability<1�10�20 to remain bound

Fig. 2 The binding site of RNase A (1rbx) with its crystallograph-
ically determined water molecules and several superimposed
ligands (from complexed structures 1eow, 1ras, 1rar, 1rnc, 1rca
and 1rbw). Water molecules sterically displaced by the ligand upon
complexation are shown in cyan. Bound water molecules are shown
in blue. Displaced water molecules are shown in yellow
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considered. We can see that the means for the B-factor,
SCSA and WHBE are higher for displaced than for bound
water molecules, while NPAC is greater for bound water
molecules. As a consequence, bound water molecules
tend to have low B-factors, small surface areas exposed to
the solvent, a large number of atomic contacts with
protein atoms and low hydrogen bond energies.

Histograms of the distributions of values for the above
structural properties for all bound and displaced water
molecules are shown in Figs. 3, 4, 5 and 6. From these
figures we can see that bound water molecules have
distributions of B-factors, SCSA and WHBE that are
shifted towards lower values as compared to those of
displaced water molecules; the distributions of NPAC
values clearly show the opposite behavior. All these
results suggest that an important condition for water

molecules to remain bound to the protein surface upon
ligand binding is to be buried deep in a crevice or groove
in the binding site while surrounded by many protein
atoms and making many hydrogen bonds, which also
restricts their mobility and the surface they expose to the
solvent.

We calculated correlation factors between all four
variables: B-factor/SCSA (0.605), B-factor/NPAC (�0.501),
B-factor/WHBE (�0.230), SCSA/NPAC (�0.349), SCSA/
WHBE (�0.432) and NPAC/WHBE (0.086). We can see
that the level of correlation between any pair of variables
is sufficiently low for their use in a multi-parametric
statistical analysis. These variables were consequently fed
into a logistic regression analysis, producing the set of
statistics shown in Table 4.

Table 3 Means and standard
deviations for the structural
properties of water molecules

Water molecules B-factor SCSA (�2) NPAC WHBE (kJ mol�1)

Bound 20.3€11.9 3.03€3.09 3.84€1.98 �38.66€16.55
Displaced 38.0€10.4 8.41€3.66 0.68€0.71 �29.22€17.60

Fig. 3 Histogram of the distributions of values of the B-factors of
bound (solid bars) and displaced (open bars) water molecules

Fig. 4 Histogram of the distributions of values of the SCSA of
bound (solid bars) and displaced (open bars) water molecules

Fig. 5 Histogram of the distributions of values of the NPAC of
bound (solid bars) and displaced (open bars) water molecules

Fig. 6 Histogram of the distributions of values of the WHBE of
bound (solid bars) and displaced (open bars) water molecules
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The best logistic regression model was obtained with
just three variables (B-factors, SCSA and NPAC). This
model shows a strong correlation (RL

2=1.0), and statisti-
cally significant evidence against the null hypothesis (of
no correlation) at a 70% confidence level. The final
equation obtained was

P Y ¼ 1ð Þ ¼ exp A½ �= 1þ exp A½ �ð Þ ð1Þ
with

A ¼ a� b1Bf � b2SCSAþ b3NPAC ð2Þ
Here P(Y=1) is the probability of a water molecule

being classified as bound, and the coefficient values are:
a=76.442, b1=5.278, b2=2.166, b3=84.458.

We can observe in the previous equations that the B-
factor and SCSA have an expected negative logistic
relationship: the higher the values of B-factor and SCSA,
the lower the probability of a water molecule being
classified as bound. On the other hand, NPAC shows a
positive logistic relationship: the lower the values of
NPAC, the lower the probability of classifying the water
molecule as bound.

Individual logistic regressions were also carried out
individually for each of the variables in order to assess
which of these had a larger weight in determining the
overall correlation between each independent variable and
P (probability). Although we observed that NPAC had the
largest coefficient in the multivariate model, all three
variables were required to produce a satisfactory model.

Our second best model included all four variables,
namely those of the previous model and the total
hydrogen-bond energy (WHBE) of each individual water
molecule. From Table 3 and Fig. 6 we can see that bound
water molecules have more negative WHBE than dis-
placed water molecules, reflecting increased hydrogen
bonding with the protein surface and/or other water
molecules. This model also showed statistical signifi-
cance at a 70% confidence level, constituting an alterna-
tive to the previous model. Its final equation was

A2 ¼ c� d1Bf � d2SCSAþ d3NPAC� d4WHBE ð3Þ
with c=44.683, d1=4.165, d2=4.017, d3=54.439, d4=0.998
and where A2 can be substituted for A in Eq. (1) above.

We can see that Bf, SCSA and NPAC have the same
logistic relationships seen in Eq. (2): negative for Bf and
SCSA, and positive for NPAC. However, their weights in
this logistic regression model are somewhat different (i.e.,
about twice as large for SCSA in A2 than in A, and
roughly half as large for NPAC in the same comparison).
This can be due to the fact that Eq. (3) now incorporates
WHBE. The negative logistic behavior of WHBE
confirms that the lower the hydrogen bond energy, the
higher the probability of a water molecule being classified

as bound. Eq. (2) might be preferable to Eq. (3) since it
has fewer variables; however, Eq. (3) can provide a
smoother model, as the magnitude of the constant
coefficient and the weight of NPAC (the only discrete
variable considered) are smaller in relation to the other
terms.

A principal components analysis (PCA) was carried
out to identify the variables that contributed the most to
the variance of the data points. Figure 7a shows the plot of
the objects (water molecule observations) on the axes of
the two main principal components.

Figure 7b shows the loading plot of the variables and
how they contribute to the principal components (PC). B-
factor and WHBE (with also a negative contribution from
SCSA) are those standing out in PC1 and PC2, respec-
tively.

Clearly, the two distinct groups of water molecules we
aim to separate are distinguished by the PCA study. With
the exception of point 38, conserved water molecules
have values higher in principal component PC2 (mainly
hydrogen bond energy and negative solvent contact
surface area), while those displaced have values higher
in principal component 1, PC1 (mainly B-factor). PC1
explains 82.77% of the variance of the data, while PC2
explains 8.53% (together explaining 91.3%). PC3 ac-
counts for 4.36% (the first three principal components
explaining 95.7% of the variance in the data), and PC4 for
another 4.31% (the total sum of four principal compo-
nents is 99.97%).

From Fig. 7b it is seen that at least three variables need
to be taken into account for an acceptable description of
the data. This test provides strength of argument to the
distinction between these two classes of water molecules
by three variables.

A logistic regression using only any two variables did
not produce results of the statistical significance of Eq. (1)
using either Eq. (2) or Eq. (3). Therefore, we chose to use
Eq. (2) (three-variable) as our model for testing and for
implementation in WaterScore.

The water molecules in the binding site of the enzymes
in the calibration (or training) set were scored with Eq. (2),
and all bound or conserved water molecules scored a
probability of 1.0 or very near to this value, while all
displaced water molecules scored a probability of less
than 1�10�20. That is, they all are predicted correctly
according to the calibration (see Fig. 1).

WaterScore was then tested on another set of enzymes
for evaluation of its prediction scores. The results are
presented in Table 2.

Overall, the results are encouraging, since the program
performs reasonably well on new systems, though strong
consideration needs to be taken to achieve a good
superposition of binding sites. WaterScore scores water

Table 4 Multivariate logistic
regression statistics. Model 1 is
the thee-variable model (A in
Eq. 2) and Model 2 is the four-
variable model (A2 in Eq. 4)

Model Dm D0 Gm RL
2 c2

95% c2
70% Gm/c2

70%

1 1.35�10�6 42.1359 42.1359 1.0 53.0991 42.1385 0.9999
2 2.29x10�6 42.1359 42.1359 1.0 53.0991 42.1385 0.9999
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molecules from a range of probability values of 5.9�10�72

to 1.0 on a total of 46 water molecules tested for
prediction. Considering a probability threshold of 1�10�20

to distinguish between conserved and displaced waters,
and a threshold of 1.5 � for the distance between water
molecules, gives a prediction efficiency of 67.4%. This
value is acceptable considering the widespread applica-
bility of the program and method. If a looser (wider)
threshold of 2.0 � is allowed for the distance between
water molecules, the efficiency improves to 71.7%.

Conclusions

We have obtained novel multivariate logistic models to
establish a quantitative relationship between simple
micro-environmental structural properties of water mole-
cules in the empty binding site of a protein and the
probability of observing the same (bound) water mole-
cules after ligand binding. Our models make use of the B-
factor, the solvent-contact surface area, the total hydrogen
bond energy and the number of protein atomic contacts
that a water molecule has, showing that bound water
molecules are likely to have low B-factors, small SCSA,
low WHBE and large NPAC. This is indicative of water
molecules of low mobility, buried deep in crevices or
grooves in the binding site of a protein. This provides a
consistent approach to the inclusion of water molecules in
protein binding sites across different biomolecular appli-
cations.

There are two advantages to having simple models for
determining whether a water molecule will be displaced
or remain bound upon ligand binding. The first one is that
they are very fast methods that can easily be updated as
new and better-resolved protein crystal structures become
available. The second one is that such models allow for
the immediate analysis of protein crystal structures for the
judicious selection of water molecules to be included in
protein–ligand docking and/or structure-based drug de-
sign. This should lead to the prediction of more accurate
binding modes and free energies of binding as well as the
modulation of chemical diversity in designed ligands.

We are currently extending our applications of this
method to de novo drug design [45] and ligand docking
for a number of protein targets where water molecules are

likely to play an important role in ligand-binding
specificity and plasticity.

Lists of selected scorings and typical output produced
by WaterScore can be seen at http://www.cus.cam.ac.uk/
~atg21
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Appendix

We provide a brief outline of multivariate logistic
regression analysis. [50, 51, 52] For a binary dependent
variable Y that can take values of either 0 or 1, its mean is
the proportion of cases of the higher value (1), and the
predicted value of the dependent variable (the conditional
mean, given the value of the independent variable X and
the assumption that Y and X are linearly related) can be
interpreted as the predicted probability that an observa-
tion falls into such higher value. By definition, the
predicted probability lies between 0 and 1. The general
shape of the relationship between the probability P(Y=1)
and the independent variable X is that of an “S curve”, as
depicted in Fig. 8.

Instead of predicting the arbitrary value associated
with the dependent variable Y, it may be useful to predict
the probability that a given observation (as defined by a
set of independent variables) will be classified into one of
the two values of the dependent variable. Naturally, if we
know P(Y=1), we immediately also know the probability
of P(Y=0) as P(Y=0)=1�P(Y=1).

If the probability that Y=1 is modeled as
P(Y=1)=a+bX, its predicted values may be less than 0
or greater than 1. The first step to avoid this is to replace
the probability that Y=1 with the odds that Y=1. The odds
that Y=1, written Odds(Y=1), is the ratio of the probability
that Y=1 to the probability that Y6¼1. Odds(Y=1) is then
equal to P(Y=1)/[1�P(Y=1)]. Unlike P(Y=1), the odds has

Fig. 7 a Plot of the water mol-
ecule observations along their
two principal components in
variance (from PCA). Open
circles indicate the water mole-
cules conserved and solid cir-
cles show those displaced. b
Loadings plot of the variables
included in the PCA of the
water molecule observations
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no fixed maximum value, but like the probability, it has a
minimum value of 0.

One further transformation of the odds produces a
variable that varies, in principle, from negative infinity to
positive infinity. The natural logarithm of the odds,
ln{P(Y=1)/[1�P(Y=1)]}, is called the logit of Y, and is
written logit(Y). This function becomes negative and
increasingly large as the odds decrease from 1 to 0, and
becomes positive and increasingly large as the odds
increase from 1 to infinity. By using the natural logarithm
of the odds that Y=1 as the dependent variable, one no
longer has the problem that the estimated probability may
exceed the maximum or minimum possible values for the
probability (see Fig. 8). The equation for the relationship
between the dependent variable and a number of
independent variables can be then expressed as

logit Yð Þ ¼ aþ b1X1 þ b2X2 þ � � � þ bkXk ð4Þ
Calculating back the odds as Odds(Y=1)=exp[logit(Y)]

gives us

Odds Y ¼ 1ð Þ ¼ exp ln Odds Y ¼ 1ð Þ½ �f g

¼ exp aþ b1X1 þ b2X2 þ � � � þ bkXkð Þ
ð5Þ

A change of unit in Xi multiplies the odds by exp(b).
The odds can be converted back to the probability that
Y=1 by the formula P(Y=1)=Odds(Y=1)/[1+Odds(Y=1)],
producing the equation

P Y ¼ 1ð Þ ¼ exp aþ b1X1 þ b2X2 þ . . .þ bkXkð Þ
1þ exp aþ b1X1 þ b2X2 þ . . .þ bkXkð Þ

ð6Þ
For any given case, logit(Y)=€1. This ensures that the

probabilities estimated will not be less than 0 or greater
than 1. Because the linear form of the model (Eq. 4) can
have infinitely large or small values for the dependent
variable, ordinary least squares (OLS) cannot be used to
estimate the parameters bi. Instead, maximum likelihood
techniques are used to maximize the value of the log
likelihood (LL) function, which indicates how likely it is
to obtain the observed values of Y, given the values of the
independent variables and the parameters a, b1, ..., bk.
Unlike OLS, which is able to solve directly for the
parameters, the solution of the logistic regression model is

found by iterating the estimation until the solution
converges when the change in the likelihood function is
negligible (for the present study, we used a threshold of
1�10�6, in the routine logitfit.m [53] for Matlab [49]).

Twice the negative of LL has approximately a c2

distribution, which allows one to test the goodness of fit
of a model. The value of �2LL for the logistic regression
model with only the intercept included is designated D0 to
indicate that it is the �2 log likelihood statistic with none
of the independent variables in the equation. It is
analogous to the sum of squares (SST), in linear
regression analysis. Dm is analogous to the error sum of
squares (SSE) in linear regression analysis, and is
sometimes called “deviance”, and is twice the negative
LL function with the intercept as well as all the
independent variables included. Dm is used as an indicator
of how poorly the model fits all of the independent
variables in the equation. Dm is analogous to the statistical
significance of the unexplained variance in a regression
model. The most direct analogue in logistic regression
analysis to the regression sum of squares (SSR) in linear
regression analysis is the difference between D0 and Dm:

Gm ¼ c2 ¼ D0 � Dmð Þ ð7Þ
Gm is analogous to the multivariate F-test for linear

regression, as well as the regression sum of squares.
Treated as a c2 statistic, Gm provides a test of the null
hypothesis that b1=b2=...=bk=0 for the logistic regression
model. If Gm is statistically significant (with, for example,
p<0.05, a 95% confidence level), then the null hypothesis
(of random correlation) is rejected and one can conclude
that the model allows us to make predictions of P(Y=1).

A natural choice for comparing the strength of the
relationship between variables is the analogy to R2 as the
sum of the squares of the residuals over the total sum of
squares (SST), SST=SSR / SST, in a linear regression
model. RL

2 is a proportional reduction in c2 or a
proportional reduction in the absolute value of the LL
measure.

R2
L ¼ Gm=D0 ð8Þ

This statistic indicates by how much the inclusion of
the independent variables in the model increases the
goodness of fit D0 to the c2 statistic. RL

2 varies between 0
(for a model in which Gm=0, Dm=D0 and the independent
variables are useless in predicting the dependent variable)
and 1 (for a model in which Gm=�2LL and Dm=0 and the
model predicts the dependent variable with perfect
accuracy).
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